9 research outputs found

    The physiological impact of high?intensity interval training in octogenarians with comorbidities

    Get PDF
    BackgroundDeclines in cardiorespiratory fitness (CRF) and fat-free mass (FFM) with age are linked to mortality, morbidity and poor quality of life. High-intensity interval training (HIIT) has been shown to improve CRF and FFM in many groups, but its efficacy in the very old, in whom comorbidities are present is undefined. We aimed to assess the efficacy of and physiological/metabolic responses to HIIT, in a cohort of octogenarians with comorbidities (e.g. hypertension and osteoarthritis).MethodsTwenty-eight volunteers (18 men, 10 women, 81.2 ± 0.6 years, 27.1 ± 0.6 kg·m−2) with American Society of Anaesthesiology (ASA) Grade 2–3 status each completed 4 weeks (12 sessions) HIIT after a control period of equal duration. Before and after each 4 week period, subjects underwent body composition assessments and cardiopulmonary exercise testing. Quadriceps muscle biopsies (m. vastus lateralis) were taken to quantify anabolic signalling, mitochondrial oxidative phosphorylation, and cumulative muscle protein synthesis (MPS) over 4-weeks.ResultsIn comorbid octogenarians, HIIT elicited improvements in CRF (anaerobic threshold: +1.2 ± 0.4 ml·kg−1·min−1, P = 0.001). HIIT also augmented total FFM (47.2 ± 1.4 to 47.6 ± 1.3 kg, P = 0.04), while decreasing total fat mass (24.8 ± 1.3 to 24 ± 1.2 kg, P = 0.0002) and body fat percentage (33.1 ± 1.5 to 32.1 ± 1.4%, P = 0.0008). Mechanistically, mitochondrial oxidative phosphorylation capacity increased after HIIT (i.e. citrate synthase activity: 52.4 ± 4 to 67.9 ± 5.1 nmol·min−1·mg−1, P = 0.005; membrane protein complexes (C): C-II, 1.4-fold increase, P = 0.002; C-III, 1.2-fold increase, P = 0.03), as did rates of MPS (1.3 ± 0.1 to 1.5 ± 0.1%·day−1, P = 0.03). The increase in MPS was supported by up-regulated phosphorylation of anabolic signalling proteins (e.g. AKT, p70S6K, and 4E-BP1; all P < 0.05). There were no changes in any of these parameters during the control period. No adverse events were reported throughout the study.ConclusionsThe HIIT enhances skeletal muscle mass and CRF in octogenarians with disease, with up-regulation of MPS and mitochondrial capacity likely underlying these improvements. HIIT can be safely delivered to octogenarians with disease and is an effective, time-efficient intervention to improve muscle mass and physical function in a short time frame

    Changes in DXA-derived lean mass and MRI-derived cross-sectional area of the thigh are modestly associated

    No full text
    © 2019, The Author(s). Dual-energy X-ray absorptiometry (DXA) derived measures of lean mass demonstrate strong associations with magnetic resonance imaging (MRI) derived measures of muscle volume (MV) in cross-sectional studies, however, few studies have compared changes in response to an intervention. The purpose of this study was to determine the accuracy of DXA at detecting changes in lean mass, using MRI-derived MV as a reference standard. 10 male and 16 female subjects (29.2 ± 9.5 years) underwent DXA and MRI scans before and after a 10-week resistance training intervention. DXA thigh lean mass was compared to MRI mid-thigh MV, and percent change in size was compared between MRI and DXA. There was a strong correlation between measures cross-sectionally (r = 0.89) in agreement with previous investigations. However, there was a modest correlation of percentage change over time between methods (r = 0.49). Bland-Altman plots revealed that the amount of random error increased as the magnitude of the change from baseline increased. DXA measures of change in lean mass were modestly associated with MRI measures of change in MV. While there are several advantages to using DXA for the measurement of lean mass, the inability to accurately detect changes over time calls into question its use in clinical trials

    A Randomized Clinical Trial Comparing Three Different Exercise Strategies for Optimizing Aerobic Capacity and Skeletal Muscle Performance in Older Adults: Protocol for The Dart Study

    No full text
    © Copyright © 2019 Tavoian, Russ, Law, Simon, Chase, Guseman and Clark. Background: Age-related declines in physical function lead to decreased independence and higher healthcare costs. Individuals who meet the endurance and resistance exercise recommendations can improve their physical function and overall fitness, even into their ninth decade. However, most older adults do not exercise regularly, and the majority of those who do only perform one type of exercise, and in doing so are not getting the benefits of endurance or resistance exercise. Herein we present the study protocol for a randomized clinical trial that will investigate the potential for high-intensity interval training (HIIT) to improve maximal oxygen consumption, muscular power, and muscle volume (primary outcomes), as well as body composition, 6-min walk distance, and muscular strength and endurance (secondary outcomes). Methods and Analysis: This is a single-site, single-blinded, randomized clinical trial. A minimum of 24 and maximum of 30 subjects aged 60–75 that are generally healthy but insufficiently active will be randomized. After completion of baseline assessments, participants will be randomized in a 1:1:1 ratio to participate in one of three 12-week exercise programs: stationary bicycle HIIT, stationary bicycle moderate-intensity continuous training (MICT), or resistance training. Repeat assessments will be taken immediately post intervention. Discussion: This study will examine the potential for stationary bicycle HIIT to result in both cardiorespiratory and muscular adaptations in older adults. The results will provide important insights into the effectiveness of interval training, and potentially support a shift from volume-driven to intensity-driven exercise strategies for older adults. Clinical Trial Registration: This trial is registered with ClinicalTrials.gov (registration number: NCT03978572, date of registration June 7, 2019)

    Is impaired dopaminergic function associated with mobility capacity in older adults?

    No full text
    corecore