11 research outputs found

    Clinical and genetic characterization of leukoencephalopathies in adults

    Get PDF
    Leukodystrophies and genetic leukoencephalopathies are a rare group of disorders leading to progressive degeneration of cerebral white matter. They are associated with a spectrum of clinical phenotypes dominated by dementia, psychiatric changes, movement disorders and upper motor neuron signs. Mutations in at least 60 genes can lead to leukoencephalopathy with often overlapping clinical and radiological presentations. For these reasons, patients with genetic leukoencephalopathies often endure a long diagnostic odyssey before receiving a definitive diagnosis or may receive no diagnosis at all. In this study, we used focused and whole exome sequencing to evaluate a cohort of undiagnosed adult patients referred to a specialist leukoencephalopathy service. In total, 100 patients were evaluated using focused exome sequencing of 6100 genes. We detected pathogenic or likely pathogenic variants in 26 cases. The most frequently mutated genes were NOTCH3, EIF2B5, AARS2 and CSF1R. We then carried out whole exome sequencing on the remaining negative cases including four family trios, but could not identify any further potentially disease-causing mutations, confirming the equivalence of focused and whole exome sequencing in the diagnosis of genetic leukoencephalopathies. Here we provide an overview of the clinical and genetic features of these disorders in adults

    Non-alcoholic Wernicke`s encephalopathy: broadening the clinicoradiological spectrum

    No full text
    Wernicke`s encephalopathy (WE) is a serious neurological disorder secondary to thiamine deficiency. Improved recognition by radiologists and allied health providers of the different clinical settings and imaging findings associated with this emergency can optimise the management of this condition and help prevent its severe consequences. The aim of this study is to illustrate the broad clinicoradiological spectrum of non-alcoholic WE, while emphasising atypical MRI findings

    The role of 3D volumetric MR sequences in diagnosing intraventricular neurocysticercosis: preliminar results

    Get PDF
    OBJECTIVE: The purpose of this paper was to investigate the role of two three-dimensional magnetic resonance (MRI) sequences: enhanced spoiled gradient recalled echo (SPGR), and fast imaging employing steady-state acquisition (FIESTA) in the evaluation of intraventricular neurocysticercosis cysts and scolices. METHOD: Seven neurocysticercosis patients suspected of presenting intraventricular lesions were evaluated by magnetic resonance imaging using enhanced SPGR, and FIESTA. RESULTS: Enhanced SPGR detected eight cystic lesions, with scolices in four. Contrast enhancement was observed in three cysts. FIESTA also detected eight cystic lesions with the presence of scolices in seven of those cystic lesions. Four patients presented parenchymal involvement, while the remaining three presented the racemose form. CONCLUSION: FIESTA and SPGR are sequences that can detect intraventricular cysts of neurocysticercosis, and FIESTA also is good for the detection of the scolex. Considering this information we suggest that FIESTA and SPGR should be included in the MRI protocol for the investigation of intraventricular neurocysticercosis

    A novel complex neurological phenotype due to a homozygous mutation in FDX2

    No full text
    Defects in iron–sulphur [Fe-S] cluster biogenesis are increasingly recognized as causing neurological disease. Mutations in a number of genes that encode proteins involved in mitochondrial [Fe-S] protein assembly lead to complex neurological phenotypes. One class of proteins essential in the early cluster assembly are ferredoxins. FDX2 is ubiquitously expressed and is essential in the de novo formation of [2Fe-2S] clusters in humans. We describe and genetically define a novel complex neurological syndrome identified in two Brazilian families, with a novel homozygous mutation in FDX2. Patients were clinically evaluated, underwent MRI, nerve conduction studies, EMG and muscle biopsy. To define the genetic aetiology, a combination of homozygosity mapping and whole exome sequencing was performed. We identified six patients from two apparently unrelated families with autosomal recessive inheritance of a complex neurological phenotype involving optic atrophy and nystagmus developing by age 3, followed by myopathy and recurrent episodes of cramps, myalgia and muscle weakness in the first or second decade of life. Sensory-motor axonal neuropathy led to progressive distal weakness. MRI disclosed a reversible or partially reversible leukoencephalopathy. Muscle biopsy demonstrated an unusual pattern of regional succinate dehydrogenase and cytochrome c oxidase deficiency with iron accumulation. The phenotype was mapped in both families to the same homozygous missense mutation in FDX2 (c.431C 4 T, p.P144L). The deleterious effect of the mutation was validated by real-time reverse transcription polymerase chain reaction and western blot analysis, which demonstrated normal expression of FDX2 mRNA but severely reduced expression of FDX2 protein in muscle tissue. This study describes a novel complex neurological phenotype with unusual MRI and muscle biopsy features, conclusively mapped to a mutation in FDX2, which encodes a ubiquitously expressed mitochondrial ferredoxin essential for early [Fe-S] cluster biogenesis

    Histiocytosis: a review focusing on neuroimaging findings

    No full text
    Objective: Histiocytosis is a systemic disease that usually affects the central nervous system. The aim of this study is to discuss the neuroimaging characteristics of Langerhans cell histiocytosis (LCH), the most common of these diseases; and the non-Langerhans cells histiocytosis (NLCH), which includes entities such as hemophagocytic syndrome, Erdheim-Chester and Rosai-Dorfman diseases. Method: Literature review and illustrative cases with pathologic confirmation. Results: In LCH, the most common findings are 1) osseous lesions in the craniofacial bones and/or skull base; 2) intracranial, extra-axial changes; 3) intra-axial parenchymal changes (white and gray matter); 4) atrophy. Among the NLCH, diagnosis usually requires correlation with clinical and laboratory criteria. The spectrum of presentation includes intraparenchymal involvement, meningeal lesions, orbits and paranasal sinus involvement. Conclusion: It is important the recognition of the most common imaging patterns, in order to include LCH and NLCH in the differential diagnosis, whenever pertinent
    corecore