7 research outputs found

    Bayesian analysis of trinomial data in behavioral experiments and its application to human studies of general anesthesia

    Get PDF
    Accurate quantification of loss of response to external stimuli is essential for understanding the mechanisms of loss of consciousness under general anesthesia. We present a new approach for quantifying three possible outcomes that are encountered in behavioral experiments during general anesthesia: correct responses, incorrect responses and no response. We use a state-space model with two state variables representing a probability of response and a conditional probability of correct response. We show applications of this approach to an example of responses to auditory stimuli at varying levels of propofol anesthesia ranging from light sedation to deep anesthesia in human subjects. The posterior probability densities of model parameters and the response probability are computed within a Bayesian framework using Markov Chain Monte Carlo methods.National Institutes of Health (U.S.) (Grant DP2-OD006454)National Institutes of Health (U.S.) (Grant K25-NS057580)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-EB006385)National Institutes of Health (U.S.) (Grant R01-MH071847

    Statistical modeling of behavioral dynamics during propofol-induced loss of consciousness

    No full text
    Background Accurate quantitative analysis of the changes in responses to external stimuli is crucial for characterizing the timing of loss and recovery of consciousness induced by anesthetic drugs. We studied induction and emergence from unconsciousness achieved by administering a computer-controlled infusion of propofol to ten human volunteers. We evaluated loss and recovery of consciousness by having subjects execute every 4 s two interleaved computer delivered behavioral tasks: responding to verbal stimuli (neutral words or the subject's name), or less salient stimuli of auditory clicks. New method We analyzed the data using state-space methods. For each stimulus type the observation model is a two-stage binomial model and the state model is two dimensional random walk in which one cognitive state governs the probability of responding and the second governs the probability of correctly responding given a response. We fit the model to the experimental data using Bayesian Monte Carlo methods. Results During induction subjects lost responsiveness to less salient clicks before losing responsiveness to the more salient verbal stimuli. During emergence subjects regained responsiveness to the more salient verbal stimuli before regaining responsiveness to the less salient clicks. Comparison with existing method(s) The current state-space model is an extension of previous model used to analyze learning and behavioral performance. In this study, the probability of responding on each trial is obtained separately from the probability of behavioral performance. Conclusions Our analysis provides a principled quantitative approach for defining loss and recovery of consciousness in experimental studies of general anesthesia.National Institutes of Health (U.S.) (R01-EB006385-01)National Institutes of Health (U.S.) (Director's Pioneer Award DP1-OD003646)National Institutes of Health (U.S.) (R01-MH071847

    Linear and Nonlinear Quantification of Respiratory Sinus Arrhythmia during Propofol General Anesthesia

    No full text
    Quantitative evaluation of respiratory sinus arrhythmia (RSA) may provide important information in clinical practice of anesthesia and postoperative care. In this paper, we apply a point process method to assess dynamic RSA during propofol general anesthesia. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by a linear or bilinear bivariate regression on the previous R-R intervals and respiratory measures. The estimated second-order bilinear interaction allows us to evaluate the nonlinear component of the RSA. The instantaneous RSA gain and phase can be estimated with an adaptive point process filter. The algorithm's ability to track non-stationary dynamics is demonstrated using one clinical recording. Our proposed statistical indices provide a valuable quantitative assessment of instantaneous cardiorespiratory control and heart rate variability (HRV) during general anesthesia.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant K25-NS05758)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-DA015644

    Tracking Brain States under General Anesthesia by Using Global Coherence Analysis

    No full text
    Time and frequency domain analyses of scalp EEG recordings are widely used to track changes in brain states under general anesthesia. Although these analyses have suggested that different spatial patterns are associated with changes in the state of general anesthesia, the extent to which these patterns are spatially coordinated has not been systematically characterized. Global coherence, the ratio of the largest eigenvalue to the sum of the eigenvalues of the cross-spectral matrix at a given frequency and time, has been used to analyze the spatiotemporal dynamics of multivariate time-series. Using 64-lead EEG recorded from human subjects receiving computer-controlled infusions of the anesthetic propofol, we used surface Laplacian referencing combined with spectral and global coherence analyses to track the spatiotemporal dynamics of the brain's anesthetic state. During unconsciousness the spectrograms in the frontal leads showed increasing α (8–12 Hz) and δ power (0–4 Hz) and in the occipital leads δ power greater than α power. The global coherence detected strong coordinated α activity in the occipital leads in the awake state that shifted to the frontal leads during unconsciousness. It revealed a lack of coordinated δ activity during both the awake and unconscious states. Although strong frontal power during general anesthesia-induced unconsciousness—termed anteriorization—is well known, its possible association with strong α range global coherence suggests highly coordinated spatial activity. Our findings suggest that combined spectral and global coherence analyses may offer a new approach to tracking brain states under general anesthesia.National Institutes of Health (NIH) (Grant DP1 OD003646)National Institutes of Health (NIH) (Grant DP2-OD006454)National Institutes of Health (NIH) (Grant K25-NS05758)National Institutes of Health (NIH) (Grant 2T32NS048005-06)National Institutes of Health (NIH) (Grant 1 UL1 RR025758-01)National Institutes of Health (NIH) (Grant M01-RR-01066
    corecore