13 research outputs found

    From the Amelioration of a NADP+-dependent Formate Dehydrogenase to the Discovery of a New Enzyme: Round Trip from Theory to Practice

    Get PDF
    NADP+-dependent formate dehydrogenases (FDHs) are biotechnologically relevant enzymes for cofactors regeneration in industrial processes employing redox biocatalysts. Their effective applicability is however hampered by the low cofactor and substrate affinities of the few enzymes described so far. After different efforts to ameliorate the previously studied GraFDH from the acidobacterium Granulicella mallensis MP5ACTX8, an enzyme having double (NAD+ and NADP+) cofactor specificity, we started over our search with the advantage of hindsight. We identified and characterized GraFDH2, a novel highly active FDH, which proved to be a good NAD+-dependent catalyst. A rational engineering approach permitted to switch its cofactor specificity, producing an enzyme variant that displays a 10-fold activity improvement over the wild-type enzyme with NADP+. Such variant resulted to be one of the best performing enzyme among the NADP+-dependent FDHs reported so far in terms of catalytic performance

    Pirfenidone for Idiopathic Pulmonary Fibrosis and Beyond

    Get PDF
    Pirfenidone (PFD) slows the progression of idiopathic pulmonary fibrosis (IPF) by inhibiting the exaggerated fibrotic response and possibly through additional mechanisms, such as anti-inflammatory effects. PFD has also been evaluated in other fibrosing lung diseases. Myocardial fibrosis is a common feature of several heart diseases and the progressive deposition of extracellular matrix due to a persistent injury to cardiomyocytes may trigger a vicious cycle that leads to persistent structural and functional alterations of the myocardium. No primarily antifibrotic medications are used to treat patients with heart failure. There is some evidence that PFD has antifibrotic actions in various animal models of cardiac disease and a phase II trial on patients with heart failure and preserved ejection fraction has yielded positive results. This review summarises the evidence about the possible mechanisms of IPF and modulation by PFD, the main results about IPF or non-IPF interstitial pneumonias and also data about PFD as a potential protective cardiac drug

    A SIP-based home gateway for domotics systems: From the architecture to the prototype

    No full text
    The integration of the various home devices into a single, multi-service, and user-friendly platform is still an area of active research. In this scenario, we propose a domotics framework based on the Session Initiation Protocol (SIP) and on a SIP-based Home Gateway (SHG). The SHG retains the compatibility with the existing SIP infrastructure, allowing the user to control all domotics devices through his usual SIP client. Particular attention has been paid to the usability and scalability of the system, which brought us to define a functional addressing and control paradigm. A working prototype of the SHG and a customized SIP event package have been used to provide a proof-of-concept of our architecture, in which the SHG has been interfaced with ZigBee and Bluetooth networks

    One-Pot Biocatalytic Double Oxidation of α-Isophorone for the Synthesis of Ketoisophorone

    No full text
    The chemical synthesis of ketoisophorone, a valuable building block of vitamins and pharmaceuticals, suffers from several drawbacks in terms of reaction conditions and selectivity. Herein, the first biocatalytic one-pot double oxidation of the readily available α-isophorone to ketoisophorone is described. Variants of the self-sufficient P450cam-RhFRed with improved activity have been identified to perform the first step of the designed cascade (regio- and enantioselective allylic oxidation of α-isophorone to 4-hydroxy-α-isophorone). For the second step, the screening of a broad panel of alcohol dehydrogenases (ADHs) led to the identification of Cm-ADH10 from Candida magnoliae. The crystal structure of Cm-ADH10 was solved and docking experiments confirmed the preferred position and geometry of the substrate for catalysis. The synthesis of ketoisophorone was demonstrated both as a one-pot two-step process and as a cascade process employing designer cells co-expressing the two biocatalysts, with a productivity of up to 1.4 g L−1 d−
    corecore