60 research outputs found

    Digging Deeper into Egocentric Gaze Prediction

    Full text link
    This paper digs deeper into factors that influence egocentric gaze. Instead of training deep models for this purpose in a blind manner, we propose to inspect factors that contribute to gaze guidance during daily tasks. Bottom-up saliency and optical flow are assessed versus strong spatial prior baselines. Task-specific cues such as vanishing point, manipulation point, and hand regions are analyzed as representatives of top-down information. We also look into the contribution of these factors by investigating a simple recurrent neural model for ego-centric gaze prediction. First, deep features are extracted for all input video frames. Then, a gated recurrent unit is employed to integrate information over time and to predict the next fixation. We also propose an integrated model that combines the recurrent model with several top-down and bottom-up cues. Extensive experiments over multiple datasets reveal that (1) spatial biases are strong in egocentric videos, (2) bottom-up saliency models perform poorly in predicting gaze and underperform spatial biases, (3) deep features perform better compared to traditional features, (4) as opposed to hand regions, the manipulation point is a strong influential cue for gaze prediction, (5) combining the proposed recurrent model with bottom-up cues, vanishing points and, in particular, manipulation point results in the best gaze prediction accuracy over egocentric videos, (6) the knowledge transfer works best for cases where the tasks or sequences are similar, and (7) task and activity recognition can benefit from gaze prediction. Our findings suggest that (1) there should be more emphasis on hand-object interaction and (2) the egocentric vision community should consider larger datasets including diverse stimuli and more subjects.Comment: presented at WACV 201

    Human Attention in Image Captioning: Dataset and Analysis

    Get PDF
    In this work, we present a novel dataset consisting of eye movements and verbal descriptions recorded synchronously over images. Using this data, we study the differences in human attention during free-viewing and image captioning tasks. We look into the relationship between human attention and language constructs during perception and sentence articulation. We also analyse attention deployment mechanisms in the top-down soft attention approach that is argued to mimic human attention in captioning tasks, and investigate whether visual saliency can help image captioning. Our study reveals that (1) human attention behaviour differs in free-viewing and image description tasks. Humans tend to fixate on a greater variety of regions under the latter task, (2) there is a strong relationship between described objects and attended objects (97%97\% of the described objects are being attended), (3) a convolutional neural network as feature encoder accounts for human-attended regions during image captioning to a great extent (around 78%78\%), (4) soft-attention mechanism differs from human attention, both spatially and temporally, and there is low correlation between caption scores and attention consistency scores. These indicate a large gap between humans and machines in regards to top-down attention, and (5) by integrating the soft attention model with image saliency, we can significantly improve the model's performance on Flickr30k and MSCOCO benchmarks. The dataset can be found at: https://github.com/SenHe/Human-Attention-in-Image-Captioning.Comment: To appear at ICCV 201

    Image Captioning through Image Transformer

    Get PDF
    Automatic captioning of images is a task that combines the challenges of image analysis and text generation. One important aspect in captioning is the notion of attention: How to decide what to describe and in which order. Inspired by the successes in text analysis and translation, previous work have proposed the \textit{transformer} architecture for image captioning. However, the structure between the \textit{semantic units} in images (usually the detected regions from object detection model) and sentences (each single word) is different. Limited work has been done to adapt the transformer's internal architecture to images. In this work, we introduce the \textbf{\textit{image transformer}}, which consists of a modified encoding transformer and an implicit decoding transformer, motivated by the relative spatial relationship between image regions. Our design widen the original transformer layer's inner architecture to adapt to the structure of images. With only regions feature as inputs, our model achieves new state-of-the-art performance on both MSCOCO offline and online testing benchmarks
    • …
    corecore