289 research outputs found
Exact Evolution of Discrete Relativistic Cosmological Models
22 pages, 16 figures22 pages, 16 figuresWe study the effects of inhomogeneities on the evolution of the Universe, by considering a range of cosmological models with discretized matter content. This is done using exact and fully relativistic methods that exploit the symmetries in and about submanifolds of spacetimes that themselves possess no continuous global symmetries. These methods allow us to follow the evolution of our models throughout their entire history, far beyond what has previously been possible. We find that while some space-like curves collapse to anisotropic singularities in finite time, others remain non-singular forever. The resulting picture is of a cosmological spacetime in which some behaviour remains close to Friedmann-like, while other behaviours deviate radically. In particular, we find that large-scale acceleration is possible without any violation of the energy conditions
Effects of boundary conditions on the dynamics of the solar convection zone
Recent analyses of the helioseismic data have produced evidence for a variety of interesting dynamical behaviour associated with torsional oscillations. What is not so far clear is whether these oscillations extend all the way to the bottom of the convection zone and, if so, whether the oscillatory behaviour at the top and the bottom of the convection zone is different. Attempts have been made to understand such modes of behaviour within the framework of nonlinear dynamo models which include the nonlinear action of the Lorentz force of the dynamo generated magnetic field on the solar angular velocity. One aspect of these models that remains uncertain is the nature of the boundary conditions on the magnetic field. Here by employing a range of physically plausible boundary conditions, we show that for near-critical and moderately supercritical dynamo regimes, the oscillations extend all the way down to the bottom of the convection zone. Thus, such penetration is an extremely robust feature of the models considered. We also find parameter ranges for which the supercritical models show spatiotemporal fragmentation for a range of choices of boundary conditions. Given their observational importance, we also make a comparative study of the amplitude of torsional oscillations as a function of the boundary conditions
An exact quantification of backreaction in relativistic cosmology
An important open question in cosmology is the degree to which the
Friedmann-Lemaitre-Robertson-Walker (FLRW) solutions of Einstein's equations
are able to model the large-scale behaviour of the locally inhomogeneous
observable universe. We investigate this problem by considering a range of
exact n-body solutions of Einstein's constraint equations. These solutions
contain discrete masses, and so allow arbitrarily large density contrasts to be
modelled. We restrict our study to regularly arranged distributions of masses
in topological 3-spheres. This has the benefit of allowing straightforward
comparisons to be made with FLRW solutions, as both spacetimes admit a discrete
group of symmetries. It also provides a time-symmetric hypersurface at the
moment of maximum expansion that allows the constraint equations to be solved
exactly. We find that when all the mass in the universe is condensed into a
small number of objects (<10) then the amount of backreaction in dust models
can be large, with O(1) deviations from the predictions of the corresponding
FLRW solutions. When the number of masses is large (>100), however, then our
measures of backreaction become small (<1%). This result does not rely on any
averaging procedures, which are notoriously hard to define uniquely in general
relativity, and so provides (to the best of our knowledge) the first exact and
unambiguous demonstration of backreaction in general relativistic cosmological
modelling. Discrete models such as these can therefore be used as laboratories
to test ideas about backreaction that could be applied in more complicated and
realistic settings.Comment: 13 pages, 9 figures. Corrections made to Tables IV and
Humoral immune consequences of Staphylococcus aureus ST239-associated bacteremia
The humoral immune responses against 46 different staphylococcal antigens in 27 bacteremia patients infected by clonally related methicillin-resistant Staphylococcus aureus (MRSA) strains of a single sequence type (ST) 239 were investigated. A group of non-infected patients (n = 31) hospitalized for different reasons served as controls. All strains were confirmed as ST 239 by S. aureus and mecA-specific PCR, spa, and multi-locus sequence typing (MLST). In each bacteremia patient, a unique pattern of S. aureus antigen-specific immune responses after infection was observed. Antibody levels among bacteremia patients were significantly higher than controls for HlgB (P = 0.001), LukD (P = 0.009), LukF (P = 0.0001), SEA (P = 0.0001), SEB (P = 0.011), SEC (P = 0.010), SEQ (P = 0.049), IsaA (P = 0.043), IsdA (P = 0.038), IsdH (P = 0.01), SdrD (P = 0.001), SdrE (P = 0.046), EsxA (P = 0.0001), and SA0104 (P = 0.0001). On the other hand, the antibody levels were significantly higher among controls for SSL3 (P = 0.009), SSL9 (P = 0.002), and SSL10 (P = 0.007) when the IgG level on the day of infection was compared with that measured on the day of admission. Diversity was observed in the immune response against the antigens. However, a set of antigens (IsaA, IsdA, IsdH, SdrD, and HlgB) triggered a similar type of immune response in different individuals. We suggest that these antigens could be considered when developing a multi-component (passive) vaccine. SEA and/or its specific antibodies seem to play a critical role during ST239 MRSA bacteremia and SEA-targeted therapy may be a strategy to be considered
- …