16 research outputs found

    Detection of gunshot residues using mass spectrometry

    Get PDF
    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the "gold standard" for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis. © 2014 Regina Verena Taudte et al

    Determination of selenium in serum in the presence of gadolinium with ICP-QQQ-MS

    Full text link
    This journal is © The Royal Society of Chemistry 2015. Gadolinium (Gd)-based magnetic resonance imaging (MRI) contrasting agents interfere with the determination of selenium (Se) when analysed by single quadrupole inductively coupled plasma-mass spectrometry (ICP-MS). This paper demonstrates that an ICP-triple quadrupole-MS (ICP-QQQ-MS) with oxygen mass shift overcomes Gd++ interference on Se+ and mitigates typically encountered matrix and spectral based interferences. Normal human serum was diluted in a solution containing isopropanol, EDTA, NH4OH and Triton X-100. Samples were unspiked (control) serum; serum spiked with 0.127 μmol L-1 Se or 127 μmol L-1 Gd; and serum spiked with both 0.127 μmol L-1 Se and 127 μmol L-1 Gd. Consideration of collision/reaction gases and conditions for interference mitigation included helium (He); a 'low' and 'high' hydrogen (H2) flow, and oxygen (O2). The instrument tune for O2 was optimised for effective elimination of interferences via a mass shift reaction of Se+ to SeO+. The ICP-QQQ-MS was capable of detecting trace (>9.34 nmol L-1) levels of Se in serum in the presence of Gd in our simulated post-MRI serum sample. The multi-tune capabilities of the ICP-QQQ-MS may be adapted to eliminate other specific isobaric interferences that cause false positive results in other analyses where the analyte is confounded by doubly charged and/or polyatomic species

    Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil

    Full text link
    © 2016 Elsevier B.V.. A novel microfluidic paper-based analytical device (μPAD) was designed to filter, extract, and pre-concentrate explosives from soil for direct analysis by a lab on a chip (LOC) device. The explosives were extracted via immersion of wax-printed μPADs directly into methanol soil suspensions for 10 min, whereby dissolved explosives travelled upwards into the μPAD circular sampling reservoir. A chad was punched from the sampling reservoir and inserted into a LOC well containing the separation buffer for direct analysis, avoiding any further extraction step. Eight target explosives were separated and identified by fluorescence quenching. The minimum detectable amounts for all eight explosives were between 1.4 and 5.6 ng with recoveries ranging from 53-82% from the paper chad, and 12-40% from soil. This method provides a robust and simple extraction method for rapid identification of explosives in complex soil samples
    corecore