36 research outputs found

    A physiologically based pharmacokinetic model of voriconazole integrating time-dependent inhibition of CYP3A4, genetic polymorphisms of CYP2C19 and predictions of drug-drug interactions

    Get PDF
    Background Voriconazole, a first-line antifungal drug, exhibits nonlinear pharmacokinetics (PK), together with large interindividual variability but a narrow therapeutic range, and markedly inhibits cytochrome P450 (CYP) 3A4 in vivo. This causes difficulties in selecting appropriate dosing regimens of voriconazole and coadministered CYP3A4 substrates. Objective This study aimed to investigate the metabolism of voriconazole in detail to better understand dose- and time-dependent alterations in the PK of the drug, to provide the model basis for safe and effective use according to CYP2C19 genotype, and to assess the potential of voriconazole to cause drug-drug interactions (DDIs) with CYP3A4 substrates in more detail. Methods In vitro assays were carried out to explore time-dependent inhibition (TDI) of CYP3A4 by voriconazole. These results were combined with 93 published concentration-time datasets of voriconazole from clinical trials in healthy volunteers to develop a whole-body physiologically based PK (PBPK) model in PK-Sim(R). The model was evaluated quantitatively with the predicted/observed ratio of the area under the plasma concentration-time curve (AUC), maximum concentration (C-max), and trough concentrations for multiple dosings (C-trough), the geometric mean fold error, as well as visually with the comparison of predicted with observed concentration-time datasets over the full range of recommended intravenous and oral dosing regimens. Results The result of the half maximal inhibitory concentration (IC50) shift assay indicated that voriconazole causes TDI of CYP3A4. The PBPK model evaluation demonstrated a good performance of the model, with 71% of predicted/observed aggregate AUC ratios and all aggregateC(max)ratios from 28 evaluation datasets being within a 0.5- to 2-fold range. For those studies reporting CYP2C19 genotype, 89% of aggregate AUC ratios and all aggregateC(max)ratios were inside a 0.5- to 2-fold range of 44 test datasets. The results of model-based simulations showed that the standard oral maintenance dose of voriconazole 200 mg twice daily would be sufficient for CYP2C19 intermediate metabolizers (IMs; *1/*2, *1/*3, *2/*17, and *2/*2/*17) to reach the tentative therapeutic range of > 1-2 mg/L to <5-6 mg/L forC(trough), while 400 mg twice daily might be more suitable for rapid metabolizers (RMs; *1/*17, *17/*17) and normal metabolizers (NMs; *1/*1). When the model was integrated with independently developed CYP3A4 substrate models (midazolam and alfentanil), the observed AUC change of substrates by voriconazole was inside the 90% confidence interval of the predicted AUC change, indicating that CYP3A4 inhibition was appropriately incorporated into the voriconazole model. Conclusions Both the in vitro assay and model-based simulations support TDI of CYP3A4 by voriconazole as a pivotal characteristic of this drug's PK. The PBPK model developed here could support individual dose adjustment of voriconazole according to genetic polymorphisms of CYP2C19, and DDI risk management. The applicability of modeling results for patients remains to be confirmed in future studies.Peer reviewe

    Brain Exposure to Piperacillin in Acute Hemorrhagic Stroke Patients Assessed by Cerebral Microdialysis and Population Pharmacokinetics

    Get PDF
    Background The broad antibacterial spectrum of piperacillin/tazobactam makes the combination suitable for the treatment of nosocomial bacterial central nervous system (CNS) infections. As limited data are available regarding piperacillin CNS exposure in patients without or with low-grade inflammation, a clinical study was conducted (1) to quantify CNS exposure of piperacillin by cerebral microdialysis and (2) to evaluate different dosing regimens in order to improve probability of target attainment (PTA) in brain. Methods Ten acute hemorrhagic stroke patients (subarachnoid hemorrhage, n = 6; intracerebral hemorrhage, n = 4) undergoing multimodality neuromonitoring received 4 g piperacillin/0.5 g tazobactam every 8 h by 30-min infusions for the management of healthcare-associated pneumonia. Cerebral microdialysis was performed as part of the clinical neuromonitoring routine, and brain interstitial fluid samples were retrospectively analyzed for piperacillin concentrations after the first and after multiple doses for at least 5 days and quantified by high-performance liquid chromatography. Population pharmacokinetic modeling and Monte Carlo simulations with various doses and types of infusions were performed to predict exposure. A T->MIC of 50% was selected as pharmacokinetic/pharmacodynamic target parameter. Results Median peak concentrations of unbound piperacillin in brain interstitial space fluid were 1.16 (range 0.08-3.59) and 2.78 (range 0.47-7.53) mg/L after the first dose and multiple doses, respectively. A one-compartment model with a transit compartment and a lag time (for the first dose) between systemic and brain exposure was appropriate to describe the brain concentrations. Bootstrap median estimates of the parameters were: transfer rate from plasma to brain (0.32 h(-1)), transfer rate from brain to plasma (7.31 h(-1)), and lag time [2.70 h (coefficient of variation 19.7%)]. The simulations suggested that PTA would exceed 90% for minimum inhibitory concentrations (MICs) up to 0.5 mg/L and 1 mg/L at a dose of 12-16 and 24 g/day, respectively, regardless of type of infusion. For higher MICs, PTA dropped significantly. Conclusion Limited CNS exposure of piperacillin might be an obstacle in treating patients without general meningeal inflammation except for infections with highly susceptible pathogens. Brain exposure of piperacillin did not improve significantly with a prolongation of infusions

    A Physiologically Based Pharmacokinetic Model of Voriconazole Integrating Time-Dependent Inhibition of CYP3A4, Genetic Polymorphisms of CYP2C19 and Predictions of Drug–Drug Interactions

    Get PDF
    Background: Voriconazole, a first-line antifungal drug, exhibits nonlinear pharmacokinetics (PK), together with large interindividual variability but a narrow therapeutic range, and markedly inhibits cytochrome P450 (CYP) 3A4 in vivo. This causes difficulties in selecting appropriate dosing regimens of voriconazole and coadministered CYP3A4 substrates.Objective: This study aimed to investigate the metabolism of voriconazole in detail to better understand dose- and time-dependent alterations in the PK of the drug, to provide the model basis for safe and effective use according to CYP2C19 genotype, and to assess the potential of voriconazole to cause drug–drug interactions (DDIs) with CYP3A4 substrates in more detail.Methods: In vitro assays were carried out to explore time-dependent inhibition (TDI) of CYP3A4 by voriconazole. These results were combined with 93 published concentration–time datasets of voriconazole from clinical trials in healthy volunteers to develop a whole-body physiologically based PK (PBPK) model in PK-Sim®. The model was evaluated quantitatively with the predicted/observed ratio of the area under the plasma concentration–time curve (AUC), maximum concentration (Cmax), and trough concentrations for multiple dosings (Ctrough), the geometric mean fold error, as well as visually with the comparison of predicted with observed concentration–time datasets over the full range of recommended intravenous and oral dosing regimens.Results: The result of the half maximal inhibitory concentration (IC50) shift assay indicated that voriconazole causes TDI of CYP3A4. The PBPK model evaluation demonstrated a good performance of the model, with 71% of predicted/observed aggregate AUC ratios and all aggregate Cmax ratios from 28 evaluation datasets being within a 0.5- to 2-fold range. For those studies reporting CYP2C19 genotype, 89% of aggregate AUC ratios and all aggregate Cmax ratios were inside a 0.5- to 2-fold range of 44 test datasets. The results of model-based simulations showed that the standard oral maintenance dose of voriconazole 200 mg twice daily would be sufficient for CYP2C19 intermediate metabolizers (IMs; *1/*2, *1/*3, *2/*17, and *2/*2/*17) to reach the tentative therapeutic range of > 1–2 mg/L to Conclusions: Both the in vitro assay and model-based simulations support TDI of CYP3A4 by voriconazole as a pivotal characteristic of this drug’s PK. The PBPK model developed here could support individual dose adjustment of voriconazole according to genetic polymorphisms of CYP2C19, and DDI risk management. The applicability of modeling results for patients remains to be confirmed in future studies.</p

    A Single Dose of Baicalin Has No Clinically Significant Effect on the Pharmacokinetics of Cyclosporine A in Healthy Chinese Volunteers

    Get PDF
    Despite its narrow therapeutic window and large interindividual variability, cyclosporine A (CsA) is the first-line therapy following organ transplantation. Metabolized mainly by CYP3A and being a substrate of P-glycoprotein (P-gp), CsA is susceptible to drug–drug interactions. Baicalin (BG) is a drug used for adjuvant therapy of hepatitis in traditional Chinese medicine. Since its aglycone baicalein (B) inhibits CYP3A and P-gP, co-administration might affect CsA pharmacokinetics. This study investigated the effect of BG on CsA pharmacokinetics. In a two-period study, 16 healthy volunteers received a single 200 mg oral CsA dose alone (reference period) or in combination with 500 mg BG (test period). Pharmacokinetic evaluation of CsA was carried out using non-compartmental analysis (NCA) and population pharmacokinetics (popPK). Treatments were compared using the standard bioequivalence method. Based on NCA, 90% CIs of AUC and Cmax test-to-reference ratios were within bioequivalence boundaries. In the popPK analysis, a two-compartment model (clearance/F 62.8 L/h, central and peripheral volume of distribution/F 254 L and 388 L) with transit compartments for absorption appropriately described CsA concentrations. No clinically relevant effect of 500 mg BG co-administration on CsA pharmacokinetics was identified and both treatments were well tolerated

    A population pharmacokinetic model of remdesivir and its major metabolites based on published mean values from healthy subjects

    No full text
    Remdesivir is a direct-acting anti-viral agent. It was originally evaluated against filoviruses. However, during the COVID-19 pandemic, it was investigated due to its anti-viral activities against (SARS-CoV-2) virus. Therefore remdesivir received conditional approval for treatment of patients with severe coronavirus disease. Yet, its pharmacokinetic properties are inadequately understood. This report describes the population pharmacokinetics of remdesivir and its two plasma-detectable metabolites (GS-704277 and GS-441524) in healthy volunteers. The data was extracted from published phase I single escalating and multiple i.v remdesivir dose studies conducted by the manufacturer. The model was developed by standard methods using non-linear mixed effect modeling. Also, a series of simulations were carried out to test suggested clinical doses. The model describes the distribution of remdesivir and each of its metabolites by respective two compartments with sequential metabolism between moieties, and elimination from central compartments. As individual data were not available, only inter-cohort variability could be assessed. The estimated point estimates for central (and peripheral) volumes of distribution for remdesivir, GS-704277, and GS-441524 were 4.89 L (46.5 L), 96.4 L (8.64 L), and 26.2 L (66.2 L), respectively. The estimated elimination clearances of remdesivir, GS704277, and GS-441524 reached 18.1 L/h, 36.9 L/h, and 4.74 L/h, respectively. The developed model described the data well. Simulations of clinically approved doses showed that GS-441524 concentrations in plasma exceeded the reported EC50 values during the complete duration of treatment. Nonetheless, further studies are needed to explore the pharmacokinetics of remdesivir and its relationship to clinical efficacy, and the present model may serve as a useful starting point for additional evaluations

    The relation between tau pathology and granulovacuolar degeneration of neurons

    No full text
    Neurofibrillary tangles arising from aggregated microtubule-associated protein tau occur in aged brains and are hallmarks of neurodegenerative diseases. A subset of neurons containing aggregated tau displays granulovacuolar degeneration (GVD) that is characterized by membrane-bound cytoplasmic vacuoles, each containing an electron dense granule (GVB). Tau pathology induces GVBs in experimental models, but GVD does not generally follow tau pathology in the human brain. The entorhinal cortex, DRN, and LC are among the regions that display pathological changes of tau earliest, whereas neurons with GVBs occur first in the hippocampus and have been found in oral raphe nuclei only at the most advanced GVD stage. To date, there is no detailed report about neurons with GVD in aminergic nuclei. We studied the relation between tau pathology and GVD in field CA1 of the hippocampus, entorhinal cortex, dorsal (DRN) and median (MRN) raphe nucleus, and locus coeruleus from elderly subjects with Braak & Braak stages of tau pathology ranging from 0 to VI. Tau pathology and GVBs were visualized by means of immunolabeling and quantified. Percentages of neurons containing GVBs were significantly related to percentages of AT8-positive neurons in the regions examined. GVD and tau pathology were found together in neurons to a different extent in regions of the brain. 53.2% of AT8-immunoreactive neurons in CA1, 19.8% in layer II of the entorhinal cortex, 29.6% in the DRN, and 31.4% in the locus coeruleus contained GVBs. Age-related factors, the percentage of neurons with pretangles in a region of the brain, and the metabolism of a neuron possibly influence the prevalence of neurons with GVBs

    A population pharmacokinetic model of intravenous telavancin in healthy individuals to assess tissue exposure

    No full text
    Non-compartmental analysis of telavancin microdialysis data indicated a sustained exposure in soft tissues and that unbound plasma concentrations were underestimated in vitro. The objective of the present evaluation was to develop a population pharmacokinetic model of telavancin to describe its plasma protein binding, its distribution into muscle, and subcutaneous tissue and to predict pharmacokinetic/-dynamic target attainment (PTA). Total plasma concentrations and microdialysate concentrations (plasma, subcutaneous, and muscle tissue) were available up to 24 h (plasma microdialysate, up to 8 h) post-dose from eight healthy subjects after a single intravenous infusion of 10 mg/kg telavancin. Population pharmacokinetic modeling and simulations were performed using NONMEM. A two-compartment model with saturable protein binding best described plasma concentrations. Plasma unbound fractions at steady state were 23, 15, and 11% at 100, 50, and 10% of the maximum predicted concentrations respectively. Distribution into muscle and subcutaneous tissue was non-linear and described appropriately by one additional compartment each. Based on total plasma concentrations, predicted median (95% confidence interval) values of AUC/MIC (MIC 0.125 mg/L, clinical breakpoint for MRSA) at steady state were 4009 [3421-4619] with a PTA of 96 [78-100] %. The fAUC/MIC in muscle was 496 [227-1232] with a PTA of 100 [98-100] %. The %fT(>MIC) was approximately 100% in plasma and interstitial space fluid of muscle and subcutaneous tissues up to an MIC of 0.25 mg/L. The model provided a new hypothesis on telavancin plasma protein binding in vivo. Proposed pharmacodynamic targets in plasma and muscle are achieved with currently approved doses of 10 mg/kg daily

    Population Pharmacokinetics of Finafloxacin in Healthy Volunteers and Patients with Complicated Urinary Tract Infections

    No full text
    Finafloxacin is a novel fluoroquinolone with increased antibacterial activity at acidic pH and reduced susceptibility to several resistance mechanisms. A phase II study revealed a good efficacy/safety profile in patients with complicated urinary tract infections (cUTIs), while the pharmacokinetics was characterized by highly variable concentration-versus-time profiles, suggesting the need for an elaborated pharmacokinetic model. Data from three clinical trials were evaluated: 127 healthy volunteers were dosed orally (n = 77) or intravenously (n = 50), and 139 patients with cUTI received finafloxacin intravenously. Plasma (2,824 samples from volunteers and 414 samples from patients) and urine (496 samples from volunteers and 135 samples patients) concentrations were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). NONMEM was used to build a population pharmacokinetic model, and pharmacokinetic/pharmacodynamic relationships were investigated via simulations and logistic regression. A two-compartment model with first-order elimination described the data best (central volume of distribution [V-c] and peripheral volume of distribution [V-p] of 47 liters [20%] and 43 liters [67%], respectively, and elimination clearance and intercompartmental clearance of 21 liters/h [54%] and 2.8 liters/h [57%], respectively [median bootstrap estimates {coefficients of variation}]). V-c increased with body surface area, and clearance was reduced in patients (-29%). Oral absorption was described best by parallel first-and zero-order processes (bioavailability of 75%). No pharmacodynamic surrogate parameter of clinical/microbiological outcome could be identified, which depended exclusively on the MIC of the causative pathogens. Despite the interindividual variability, the present data set does not support covariate-based dose adjustments. Based on the favorable safety and efficacy data, the clinical relevance of the observed variability appears to be limited

    Pharmacokinetics of Intravenous Finafloxacin in Healthy Volunteers

    No full text
    Finafloxacin is a novel fluoroquinolone exhibiting enhanced activity under acidic conditions and a broad-spectrum antibacterial profile. The present study assessed the pharmacokinetic properties and the safety and tolerability of finafloxacin following intravenous infusions. In this mixed-parallel-group, crossover study, healthy male and female volunteers received single ascending doses (18 volunteers, 200 to 1,000 mg) or multiple ascending doses (40 volunteers, 600 to 1,000 mg) of finafloxacin or placebo. Plasma and urine samples were collected by a dense sampling scheme to determine the pharmacokinetics of finafloxacin using a noncompartmental approach. Standard safety and tolerability data were documented. Finafloxacin had a volume of distribution of 90 to 127 liters (range) at steady state and 446 to 550 liters at pseudoequilibrium, indicating the elimination of a large fraction before pseudoequilibrium was reached. Areas under the concentration-time curves and maximum plasma concentrations (geometric means) increased slightly more than proportionally (6.73 to 45.9 mu g . h/ml and 2.56 to 20.2 mu g/ml, respectively), the terminal elimination half-life increased (10.6 to 17.1 h), and the urinary recovery decreased (44.2% to 31.7%) with increasing finafloxacin doses (single doses of 200 to 1,000 mg). The pharmacokinetic profiles suggested multiphasic elimination by both glomerular filtration and saturable tubular secretion. The values of the parameters were similar for single and multiple administrations. The coefficient of variation for the between-subject variability of exposure ranged from 10% (600 mg). Adverse events were mild and nonspecific, with no dependence of adverse events on dose or treatment (including placebo) being detected. Despite a relatively high interindividual variability at higher doses, the level of exposure following intravenous administration of finafloxacin appears to be predictable. Individual elimination processes should be evaluated in more detail. Finafloxacin exhibited a favorable safety and tolerability profile. (This study has been registered at ClinicalTrials.gov under registration no. NCT01910883.

    Clinical Pharmacokinetics and Pharmacodynamics of Cefiderocol

    No full text
    Cefiderocol is a new broad-spectrum cephalosporin antibiotic with promising activity against various Gram-negative bacteria including carbapenem-resistant strains. A chlorocatechol group in the C-3 side chain provides cefiderocol with a siderophore activity, improving its stability against beta-lactamases and facilitating the transportation of cefiderocol across outer bacterial membranes. Cefiderocol shows linear pharmacokinetics over a broad range of clinically relevant doses, with unchanged renal excretion constituting the main route of elimination. Geometric means (coefficient of variation) of the volume of distribution and clearance in individuals with normal kidney function were 15.8 (15%) L and 4.70 (27%) L/h, respectively. In patients with end-stage renal disease, clearance was 1.10 (24%) L/h. Time above the minimum inhibitory concentration is the main predictor of efficacy. There is no evidence for clinically relevant interactions of cefiderocol with other drugs mediated by metabolizing enzymes or drug transporters. Simulations based on population pharmacokinetic modeling suggest that dosing regimens should be adjusted based on kidney function to optimize therapeutic exposure to cefiderocol. Clinical efficacy trials indicated that cefiderocol is non-inferior to imipenem/cilastatin in the treatment of complicated urinary tract infections and acute uncomplicated pyelonephritis, and to meropenem in the treatment of nosocomial pneumonia. In the one study currently available, cefiderocol performed similarly to the best available therapy in the treatment of severe carbapenem-resistant Gram-negative infections regarding clinical and microbiological efficacy. In summary, cefiderocol shows favorable pharmacokinetic/pharmacodynamic properties and an acceptable safety profile, suggesting that cefiderocol might be a viable option to treat infections with bacteria resistant to other antibiotics
    corecore