26 research outputs found

    Tilt Modulus and Angle-Dependent Flux Lattice Melting in the Lowest Landau Level Approximation

    Full text link
    For a clean high-Tc_c superconductor, we analyze the Lawrence-Doniach free energy in a tilted magnetic field within the lowest Landau level (LLL) approximation. The free energy maps onto that of a strictly cc-axis field, but with a reduced interlayer coupling. We use this result to calculate the tilt modulus C44C_{44} of a vortex lattice and vortex liquid. The vortex contribution to C44C_{44} can be expressed in terms of the squared cc-axis Josephson plasmon frequency ωpl2\omega_{pl}^2. The transverse component of the field has very little effect on the position of the melting curve.Comment: 8 pages, 2 figures, accepted for publication in Physical Review B (Rapid Communications

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity
    corecore