5 research outputs found

    Base-Free Lanthanoidocenes(II) Coordinated by Bulky Pentabenzylcyclopentadienyl Ligands

    No full text
    Metalation of Cp<sup>Bn5</sup>H with PhCH<sub>2</sub>K (1:1 molar ratio) and subsequent reactions with 0.5 equiv of LnI<sub>2</sub>(THF)<sub><i>n</i></sub> (Ln = Yb, Sm, Eu, <i>n</i> = 2, 3) (THF, 30 °C, 1 h) afforded new lanthanoidocenes (Cp<sup>Bn5</sup>)<sub>2</sub>Ln (Ln = Yb (<b>1</b>), Sm (<b>2</b>), Eu (<b>3</b>)), which were isolated in reasonable yields. The X-ray diffraction studies revealed that the obtained complexes adopt the structures of bent sandwiches (Cp<sub>Centr</sub>–Ln–Cp<sub>Centr</sub> = 141.8–142.9°). Complexes <b>1</b>–<b>3</b> do not contain coordinated Lewis base molecules directly after recrystallization from toluene at ambient temperature; however they feature short contacts between Ln­(II) ions and <i>o</i>-carbon atoms of two pendant Ph groups. The reaction of equimolar amounts of YbI<sub>2</sub>(THF)<sub>2</sub> and Cp<sup>Bn5</sup>K in DME afforded monocyclopentadienyl Yb­(II) complex [Cp<sup>Bn5</sup>Yb­(DME)­(μ-I)]<sub>2</sub> (<b>4</b>). Complex <b>4</b> proved to be a centrosymmetric iodo-bridged dimer with trans-disposed cyclopentadienyl ligands, and no interactions of the Yb­(II) ion with pendant Ph groups were detected. Complexes <b>1</b>–<b>3</b> were inert toward Lewis bases (THF, DME, PMe<sub>3</sub>, TMEDA), small molecules (H<sub>2</sub>, SiH<sub>4</sub>, N<sub>2</sub>, CO), and molecules containing multiple C–C bonds (CH<sub>2</sub>CH<sub>2</sub>, PhCHCH<sub>2</sub>, trans-PhCHCHPh, cis-PhCHCHPh, CH<sub>2</sub>CH–CHCH<sub>2</sub>, Ph–CHCH–CHCH–Ph, PhCCPh, Me<sub>3</sub>SiCCSiMe<sub>3</sub>). Among compounds <b>1</b>–<b>3</b> only the samarium derivative <b>1</b> reacts with bipy and phenazine, affording Sm<sup>III</sup> complexes Cp<sup>Bn5</sup><sub>2</sub>Sm­(bipy<sup>–•</sup>) (<b>5</b>) and [(Cp<sup>Bn5</sup>)<sub>2</sub>Sm]<sub>2</sub>[μ-η<sup>3</sup>:η<sup>3</sup>-(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)<sup>2–</sup>] (<b>6</b>). Complex <b>4</b> when illuminated with natural light undergoes redox reaction and in 72 h transforms into the mixed-valent compound {[Cp<sup>Bn5</sup>Yb<sup>III</sup>I<sub>2</sub>(μ-OMe)]<sub>2</sub>}<sub>2</sub>­{Yb<sup>II</sup>(DME)<sub>3</sub>} (<b>7</b>), being a separated ion pair

    Base-Free Lanthanoidocenes(II) Coordinated by Bulky Pentabenzylcyclopentadienyl Ligands

    No full text
    Metalation of Cp<sup>Bn5</sup>H with PhCH<sub>2</sub>K (1:1 molar ratio) and subsequent reactions with 0.5 equiv of LnI<sub>2</sub>(THF)<sub><i>n</i></sub> (Ln = Yb, Sm, Eu, <i>n</i> = 2, 3) (THF, 30 °C, 1 h) afforded new lanthanoidocenes (Cp<sup>Bn5</sup>)<sub>2</sub>Ln (Ln = Yb (<b>1</b>), Sm (<b>2</b>), Eu (<b>3</b>)), which were isolated in reasonable yields. The X-ray diffraction studies revealed that the obtained complexes adopt the structures of bent sandwiches (Cp<sub>Centr</sub>–Ln–Cp<sub>Centr</sub> = 141.8–142.9°). Complexes <b>1</b>–<b>3</b> do not contain coordinated Lewis base molecules directly after recrystallization from toluene at ambient temperature; however they feature short contacts between Ln­(II) ions and <i>o</i>-carbon atoms of two pendant Ph groups. The reaction of equimolar amounts of YbI<sub>2</sub>(THF)<sub>2</sub> and Cp<sup>Bn5</sup>K in DME afforded monocyclopentadienyl Yb­(II) complex [Cp<sup>Bn5</sup>Yb­(DME)­(μ-I)]<sub>2</sub> (<b>4</b>). Complex <b>4</b> proved to be a centrosymmetric iodo-bridged dimer with trans-disposed cyclopentadienyl ligands, and no interactions of the Yb­(II) ion with pendant Ph groups were detected. Complexes <b>1</b>–<b>3</b> were inert toward Lewis bases (THF, DME, PMe<sub>3</sub>, TMEDA), small molecules (H<sub>2</sub>, SiH<sub>4</sub>, N<sub>2</sub>, CO), and molecules containing multiple C–C bonds (CH<sub>2</sub>CH<sub>2</sub>, PhCHCH<sub>2</sub>, trans-PhCHCHPh, cis-PhCHCHPh, CH<sub>2</sub>CH–CHCH<sub>2</sub>, Ph–CHCH–CHCH–Ph, PhCCPh, Me<sub>3</sub>SiCCSiMe<sub>3</sub>). Among compounds <b>1</b>–<b>3</b> only the samarium derivative <b>1</b> reacts with bipy and phenazine, affording Sm<sup>III</sup> complexes Cp<sup>Bn5</sup><sub>2</sub>Sm­(bipy<sup>–•</sup>) (<b>5</b>) and [(Cp<sup>Bn5</sup>)<sub>2</sub>Sm]<sub>2</sub>[μ-η<sup>3</sup>:η<sup>3</sup>-(C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>)<sup>2–</sup>] (<b>6</b>). Complex <b>4</b> when illuminated with natural light undergoes redox reaction and in 72 h transforms into the mixed-valent compound {[Cp<sup>Bn5</sup>Yb<sup>III</sup>I<sub>2</sub>(μ-OMe)]<sub>2</sub>}<sub>2</sub>­{Yb<sup>II</sup>(DME)<sub>3</sub>} (<b>7</b>), being a separated ion pair

    Yb(II) Triple-Decker Complex with the μ‑Bridging Naphthalene Dianion [Cp<sup>Bn5</sup>Yb(DME)]<sub>2</sub>(μ‑η<sup>4</sup>:η<sup>4</sup>‑C<sub>10</sub>H<sub>8</sub>). Oxidative Substitution of [C<sub>10</sub>H<sub>8</sub>]<sup>2–</sup> by 1,4-Diphenylbuta-1,3-diene and P<sub>4</sub> and Protonolysis of the Yb–C<sub>10</sub>H<sub>8</sub> Bond by PhPH<sub>2</sub>

    No full text
    Two synthetic approaches to the new three-decker Yb­(II) complex [Cp<sup>Bn5</sup>Yb­(DME)]<sub>2</sub>[μ-C<sub>10</sub>H<sub>8</sub>] (<b>1</b>) were successfully employed: the reaction of [Cp<sup>Bn5</sup>Yb­(DME)­(μ-I)]<sub>2</sub> (<b>2</b>) with 2 molar equiv of [C<sub>10</sub>H<sub>8</sub>]<sup>−</sup>·K in DME and the reaction of [YbI­(DME)<sub>2</sub>]<sub>2</sub>[μ-C<sub>10</sub>H<sub>8</sub>] (<b>3</b>) with Cp<sup>Bn5</sup>K in a 1:2 molar ratio in DME. Complex <b>1</b> was proved to be a Yb­(II) binuclear triple-decker complex containing a dianionic naphthalene ligand bridging two Cp<sup>Bn5</sup>Yb­(DME) fragments in a μ-η<sup>4</sup>:η<sup>4</sup> fashion. An oxidative substitution of (C<sub>10</sub>H<sub>8</sub>)<sup>2–</sup> by <i>trans</i>-(1<i>E</i>,3<i>E</i>)-1,4-diphenylbuta-1,3-diene afforded the three-decker Yb­(II) complex [Cp<sup>Bn5</sup>Yb­(DME)]<sub>2</sub>(μ-η<sup>4</sup>:η<sup>4</sup> -PhCHCHCHCHPh) (<b>4</b>) with a dianionic μ-η<sup>4</sup>:η<sup>4</sup>-bridging diphenylbutadiene ligand and naphthalene. The reaction of <b>1</b> with excess P<sub>4</sub> also occurs with oxidation of (C<sub>10</sub>H<sub>8</sub>)<sup>2–</sup>, whereas Yb remains divalent. The reaction results in the formation of the trinuclear Yb­(II) complex with a μ-bridging P<sub>7</sub><sup>3–</sup> ligand [Cp<sup>Bn5</sup>Yb­(DME)]<sub>3</sub>(P<sub>7</sub>) (<b>5</b>). Protonation of the Yb–C<sub>10</sub>H<sub>8</sub> bond in <b>1</b> with PhPH<sub>2</sub> (1:2 molar ratio) afforded the dimeric phosphido complex [Cp<sup>Bn5</sup>Yb­(THF)­(μ<sub>2</sub>-PHPh)]<sub>2</sub> (<b>6</b>) in 64% yield, while an attempt to obtain a phosphinidene Yb­(II) species by reacting equimolar amounts of <b>1</b> and PhPH<sub>2</sub> in DME resulted in the isolation of the metallocene complex Cp<sup>Bn5</sup><sub>2</sub>Yb­(DME) (<b>7</b>)

    Yb(II) Triple-Decker Complex with the μ‑Bridging Naphthalene Dianion [Cp<sup>Bn5</sup>Yb(DME)]<sub>2</sub>(μ‑η<sup>4</sup>:η<sup>4</sup>‑C<sub>10</sub>H<sub>8</sub>). Oxidative Substitution of [C<sub>10</sub>H<sub>8</sub>]<sup>2–</sup> by 1,4-Diphenylbuta-1,3-diene and P<sub>4</sub> and Protonolysis of the Yb–C<sub>10</sub>H<sub>8</sub> Bond by PhPH<sub>2</sub>

    No full text
    Two synthetic approaches to the new three-decker Yb­(II) complex [Cp<sup>Bn5</sup>Yb­(DME)]<sub>2</sub>[μ-C<sub>10</sub>H<sub>8</sub>] (<b>1</b>) were successfully employed: the reaction of [Cp<sup>Bn5</sup>Yb­(DME)­(μ-I)]<sub>2</sub> (<b>2</b>) with 2 molar equiv of [C<sub>10</sub>H<sub>8</sub>]<sup>−</sup>·K in DME and the reaction of [YbI­(DME)<sub>2</sub>]<sub>2</sub>[μ-C<sub>10</sub>H<sub>8</sub>] (<b>3</b>) with Cp<sup>Bn5</sup>K in a 1:2 molar ratio in DME. Complex <b>1</b> was proved to be a Yb­(II) binuclear triple-decker complex containing a dianionic naphthalene ligand bridging two Cp<sup>Bn5</sup>Yb­(DME) fragments in a μ-η<sup>4</sup>:η<sup>4</sup> fashion. An oxidative substitution of (C<sub>10</sub>H<sub>8</sub>)<sup>2–</sup> by <i>trans</i>-(1<i>E</i>,3<i>E</i>)-1,4-diphenylbuta-1,3-diene afforded the three-decker Yb­(II) complex [Cp<sup>Bn5</sup>Yb­(DME)]<sub>2</sub>(μ-η<sup>4</sup>:η<sup>4</sup> -PhCHCHCHCHPh) (<b>4</b>) with a dianionic μ-η<sup>4</sup>:η<sup>4</sup>-bridging diphenylbutadiene ligand and naphthalene. The reaction of <b>1</b> with excess P<sub>4</sub> also occurs with oxidation of (C<sub>10</sub>H<sub>8</sub>)<sup>2–</sup>, whereas Yb remains divalent. The reaction results in the formation of the trinuclear Yb­(II) complex with a μ-bridging P<sub>7</sub><sup>3–</sup> ligand [Cp<sup>Bn5</sup>Yb­(DME)]<sub>3</sub>(P<sub>7</sub>) (<b>5</b>). Protonation of the Yb–C<sub>10</sub>H<sub>8</sub> bond in <b>1</b> with PhPH<sub>2</sub> (1:2 molar ratio) afforded the dimeric phosphido complex [Cp<sup>Bn5</sup>Yb­(THF)­(μ<sub>2</sub>-PHPh)]<sub>2</sub> (<b>6</b>) in 64% yield, while an attempt to obtain a phosphinidene Yb­(II) species by reacting equimolar amounts of <b>1</b> and PhPH<sub>2</sub> in DME resulted in the isolation of the metallocene complex Cp<sup>Bn5</sup><sub>2</sub>Yb­(DME) (<b>7</b>)

    Yb(II) Triple-Decker Complex with the μ‑Bridging Naphthalene Dianion [Cp<sup>Bn5</sup>Yb(DME)]<sub>2</sub>(μ‑η<sup>4</sup>:η<sup>4</sup>‑C<sub>10</sub>H<sub>8</sub>). Oxidative Substitution of [C<sub>10</sub>H<sub>8</sub>]<sup>2–</sup> by 1,4-Diphenylbuta-1,3-diene and P<sub>4</sub> and Protonolysis of the Yb–C<sub>10</sub>H<sub>8</sub> Bond by PhPH<sub>2</sub>

    No full text
    Two synthetic approaches to the new three-decker Yb­(II) complex [Cp<sup>Bn5</sup>Yb­(DME)]<sub>2</sub>[μ-C<sub>10</sub>H<sub>8</sub>] (<b>1</b>) were successfully employed: the reaction of [Cp<sup>Bn5</sup>Yb­(DME)­(μ-I)]<sub>2</sub> (<b>2</b>) with 2 molar equiv of [C<sub>10</sub>H<sub>8</sub>]<sup>−</sup>·K in DME and the reaction of [YbI­(DME)<sub>2</sub>]<sub>2</sub>[μ-C<sub>10</sub>H<sub>8</sub>] (<b>3</b>) with Cp<sup>Bn5</sup>K in a 1:2 molar ratio in DME. Complex <b>1</b> was proved to be a Yb­(II) binuclear triple-decker complex containing a dianionic naphthalene ligand bridging two Cp<sup>Bn5</sup>Yb­(DME) fragments in a μ-η<sup>4</sup>:η<sup>4</sup> fashion. An oxidative substitution of (C<sub>10</sub>H<sub>8</sub>)<sup>2–</sup> by <i>trans</i>-(1<i>E</i>,3<i>E</i>)-1,4-diphenylbuta-1,3-diene afforded the three-decker Yb­(II) complex [Cp<sup>Bn5</sup>Yb­(DME)]<sub>2</sub>(μ-η<sup>4</sup>:η<sup>4</sup> -PhCHCHCHCHPh) (<b>4</b>) with a dianionic μ-η<sup>4</sup>:η<sup>4</sup>-bridging diphenylbutadiene ligand and naphthalene. The reaction of <b>1</b> with excess P<sub>4</sub> also occurs with oxidation of (C<sub>10</sub>H<sub>8</sub>)<sup>2–</sup>, whereas Yb remains divalent. The reaction results in the formation of the trinuclear Yb­(II) complex with a μ-bridging P<sub>7</sub><sup>3–</sup> ligand [Cp<sup>Bn5</sup>Yb­(DME)]<sub>3</sub>(P<sub>7</sub>) (<b>5</b>). Protonation of the Yb–C<sub>10</sub>H<sub>8</sub> bond in <b>1</b> with PhPH<sub>2</sub> (1:2 molar ratio) afforded the dimeric phosphido complex [Cp<sup>Bn5</sup>Yb­(THF)­(μ<sub>2</sub>-PHPh)]<sub>2</sub> (<b>6</b>) in 64% yield, while an attempt to obtain a phosphinidene Yb­(II) species by reacting equimolar amounts of <b>1</b> and PhPH<sub>2</sub> in DME resulted in the isolation of the metallocene complex Cp<sup>Bn5</sup><sub>2</sub>Yb­(DME) (<b>7</b>)
    corecore