3 research outputs found

    The Blood of the HIV-Infected Patients Contains κ-IgG, λ-IgG, and Bispecific κλ-IgG, Which Possess DNase and Amylolytic Activity

    No full text
    Though hundreds of thousands of papers are currently being published on HIV/AIDS, only tens of hundreds of them are devoted to the antibodies generated during the disease. Most of these papers discuss antibodies in HIV/AIDS as a diagnostic tool, and some articles describe neutralizing antibodies as a promising treatment. In this paper, we used affinity chromatography and ELISA to isolate natural IgG from the blood of 26 HIV-infected patients. IgG preparations were separated into the subfractions containing different types of light chains, and catalytic activities of subfractions were analyzed. Here, we show for the first time that the blood of HIV patients contains ~20% of bispecific κλ-IgG, presented with all IgG subclasses. Analysis of DNA-hydrolyzing and amylolytic activity show that most IgG preparations and subfractions are catalytically active. Our results expand the possible biological functions of natural IgG in HIV infection

    Genetic Diversity of HIV-1 in Krasnoyarsk Krai: Area with High Levels of HIV-1 Recombination in Russia

    No full text
    More than a quarter of HIV-infected individuals registered in Russia live in Siberia. Unlike Central Russia where HIV-1 subtype A6 is predominant, in most Siberian regions since 2012, a new HIV-1 CRF63_02A1 genetic variant has spread, with the share of this variant attaining 75–85% among newly identified HIV cases. Krasnoyarsk Krai is considered to be a high-risk territory according to morbidity rate and HIV infection incidence among the population. The current paper aims to study the molecular epidemiologic characteristics of HIV-1 spreading in Krasnoyarsk Krai. Phylogenetic and recombination analyses of pol (PR-RT, IN) and env regions of the virus were used for genotyping 159 HIV-1 isolated in Krasnoyarsk Krai. 57.2% of the isolates belonged to subtype A (A6) specific to Russia, 12.6% to CRF63_02A1, and 0.6% to CRF02_AGСА, and in 29.6% HIV-1 URFs were detected, including URF63/А (23.9%), URFА/В (4.4%), and URF02/А (1.3%). In 6 of 7, HIV-1 URFА/В identical recombination model was detected; the origin of 38 URF63/А was proven to be the result of individual recombination events. Since 2015, a share of the population with newly diagnosed HIV who were infected with HIV-1 URF reached an exceptionally high rate of 38.6%. As distinct from adjacent Siberian regions, the HIV-1 CRF63_02A1 prevalence rate in Krasnoyarsk Krai is within 16%; however, the increased contribution of new HIV-1 into the regional epidemic development was observed due to the recombination of viruses of subtypes А, В, and CRF63_02A1. The difference between the described molecular epidemiologic picture in Krasnoyarsk Krai and in adjacent areas is likely caused by differences in predominant routes of HIV transmission and by more recent HIV-1 CRF63_02A1 transmission in the PWID group, which had a high prevalence of HIV-1 subtype A by the time of the new virus transmission, resulting in increased possibility of coinfection with various HIV-1 genetic variants

    Image_3_Spatiotemporal dynamics of HIV-1 CRF63_02A6 sub-epidemic.JPEG

    No full text
    HIV-1 epidemic in Russia is one of the fastest growing in the world reaching 1.14 million people living with HIV-1 (PLWH) in 2021. Since mid-1990s, the HIV-1 epidemic in Russia has started to grow substantially due to the multiple HIV-1 outbreaks among persons who inject drugs (PWID) leading to expansion of the HIV-1 sub-subtype A6 (former Soviet Union (FSU) subtype A). In 2006, a local HIV-1 sub-epidemic caused by the distribution of novel genetic lineage CRF63_02A6 was identified in Siberia. In this study, we used a comprehensive dataset of CRF63_02A6 pol gene sequences to investigate the spatiotemporal dynamic of the HIV-1 CRF63_02A6 sub-epidemic. This study includes all the available CRF63_02A6 HIV-1 pol gene sequences from Los Alamos National Laboratory (LANL) HIV Sequence Database. The HIV-1 subtypes of those sequences were conferred using phylogenetic analysis, and two automated HIV-1 subtyping tools Stanford HIVdb Program and COMET. Ancestral state reconstruction and origin date were estimated using Nextstrain. Evolutionary rate and phylodynamic analysis were estimated using BEAST v 1.10.4. CRF63_02A6 was assigned for 872 pol gene sequences using phylogenetic analysis approach. Predominant number (n = 832; 95.4%) of those sequences were from Russia; the remaining 40 (4.6%) sequences were from countries of Central Asia. Out of 872 CRF63_02A6 sequences, the corresponding genetic variant was assigned for 75.7 and 79.8% of sequences by Stanford and COMET subtyping tools, respectively. Dated phylogenetic analysis of the CRF63_02A6 sequences showed that the virus most likely originated in Novosibirsk, Russia, in 2005. Over the last two decades CRF63_02A6 has been widely distributed across Russia and has been sporadically detected in countries of Central Asia. Introduction of new genetic variant into mature sub-subtype A6 and CRF02_AGFSU epidemics could promote the increase of viral genetic diversity and emergence of new recombinant forms. Further HIV-1 studies are needed due to a continuing rapid virus distribution. Also, the implementation of HIV-1 prevention programs is required to reduce HIV-1 transmission. This study also highlights the discrepancies in HIV-1 subtyping approaches. The reference lists of HIV-1 sequences implemented in widely used HIV-1 automated subtyping tools need to be updated to provide reliable results.</p
    corecore