46 research outputs found

    Differences in brain transcriptomes of closely related baikal coregonid species

    Get PDF
    The aim of this work was to get deeper insight into genetic factors involved in the adaptive divergence of closely related species, specifically two representatives of Baikal coregonids—Baikal whitefish (Coregonus baicalensis Dybowski) and Baikal omul (Coregonus migratorius Georgi)—that diverged from a common ancestor as recently as 10–20 thousand years ago. Using the Serial Analysis of Gene Expression method, we obtained libraries of short representative cDNA sequences (tags) from the brains of Baikal whitefish and omul. A comparative analysis of the libraries revealed quantitative differences among ~4% tags of the fishes under study. Based on the similarity of these tags with cDNA of known organisms, we identified candidate genes taking part in adaptive divergence. The most important candidate genes related to the adaptation of Baikal whitefish and Baikal omul, identified in this work, belong to the genes of cell metabolism, nervous and immune systems, protein synthesis, and regulatory genes as well as to DTSsa4 Tc1-like transposons which are widespread among fishes

    Dormant non-culturable Mycobacterium tuberculosis retains stable low-abundant mRNA

    Get PDF
    BACKGROUND: Dormant Mycobacterium tuberculosis bacilli are believed to play an important role in latent tuberculosis infection. Previously, we have demonstrated that cultivation of M. tuberculosis in K(+)-deficient medium resulted in generation of dormant cells. These bacilli were non-culturable on solid media (a key feature of dormant M. tuberculosis in vivo) and characterized by low metabolism and tolerance to anti-tuberculosis drugs. The dormant bacteria demonstrated a high potential to reactivation after K(+) reintroduction even after prolonged persistence under rifampicin. In this work, we studied the transcriptome and stability of transcripts in persisting dormant bacilli under arrest of mRNA de novo synthesis. RESULTS: RNA-seq-based analysis of the dormant non-culturable population obtained under rifampicin exposure revealed a 30–50-fold decrease of the total mRNA level, indicating global transcriptional repression. However, the analysis of persisting transcripts displayed a cohort of mRNA molecules coding for biosynthetic enzymes, proteins involved in adaptation and repair processes, detoxification, and control of transcription initiation. This ‘dormant transcriptome’ demonstrated considerable stability during M. tuberculosis persistence and mRNA de novo synthesis arrest. On the contrary, several small non-coding RNAs showed increased abundance on dormancy. Interestingly, M. tuberculosis entry into dormancy was accompanied by the cleavage of 23S ribosomal RNA at a specific point located outside the ribosome catalytic center. CONCLUSIONS: Dormant non-culturable M. tuberculosis bacilli are characterized by a global transcriptional repression. At the same time, the dormant bacilli retain low-abundant mRNAs, which are considerably stable during in vitro persistence, reflecting their readiness for translation upon early resuscitation steps. Increased abundance of non-coding RNAs on dormancy may indicate their role in the entry into and maintenance of M. tuberculosis dormant non-culturable state. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2197-6) contains supplementary material, which is available to authorized users

    Characterization of a Novel Transcript from Human Locus ATP4A-KIAA0841 (Chr19) (Russian)

    No full text
    <p>Poster I presented way back in 2010 on some of my very early work at the IBCH in Moscow.</p

    Small Noncoding RNAs MTS0997 and MTS1338 Affect the Adaptation and Virulence of Mycobacterium tuberculosis

    No full text
    Tuberculosis (TB) is currently the leading cause of death among bacterial infectious diseases. The spectrum of disease manifestations depends on both host immune responses and the ability of Mycobacterium tuberculosis to resist it. Small non-coding RNAs are known to regulate gene expression; however, their functional role in the relationship of M. tuberculosis with the host is poorly understood. Here, we investigated the effect of small non-coding sRNAs MTS1338 and MTS0997 on M. tuberculosis properties by creating knockout strains. We also assessed the effect of small non-coding RNAs on the survival of wild type and mutant mycobacteria in primary cultures of human alveolar macrophages and the virulence of these strains in a mouse infection model. Wild-type and mutants survived differentially in human alveolar macrophages. Infection of I/St mice with KO M. tuberculosis H37RV strains provided beneficial effects onto major TB phenotypes. We observed attenuated tuberculosis-specific inflammatory responses, including reduced cellular infiltration and decreased granuloma formation in the lungs. Infections caused by KO strains were characterized by significantly lower inflammation of mouse lung tissue and increased survival time of infected animals. Thus, the deletion of MTS0997 and MTS1338 lead to a significant decrease in the virulence of M. tuberculosis

    Assessment of piRNA biogenesis and function in testicular germ cell tumors and their precursor germ cell neoplasia in situ

    No full text
    Abstract Background Aberrant overexpression of PIWI/piRNA pathway proteins is shown for many types of tumors. Interestingly, these proteins are downregulated in testicular germ cell tumors (TGCTs) compared to normal testis tissues. Here, we used germline and TGCT markers to assess the piRNA biogenesis and function in TGCTs and their precursor germ cell neoplasia in situ (GCNIS). Methods We used small RNA deep sequencing, qRT-PCR, and mining public RNAseq/small RNA-seq datasets to examine PIWI/piRNA gene expression and piRNA biogenesis at four stages of TGCT development: (i) germ cells in healthy testis tissues, (ii) germ cells in testis tissues adjacent to TGCTs, (iii) GCNIS cells and (iv) TGCT cells. To this end, we studied three types of samples: (a) healthy testis, (b) testis tissues adjacent to two types of TGCTs (seminomas and nonseminomas) and containing both germ cells and GCNIS cells, as well as (c) matching TGCT samples. Results Based on our analyses of small RNA-seq data as well as the presence/absence of expression correlation between PIWI/piRNA pathway genes and germline or TGCT markers, we can suggest that piRNA biogenesis is intact in germ cells present in healthy adult testes, and adjacent to TGCTs. Conversely, GCNIS and TGCT cells were found to lack PIWI/piRNA pathway gene expression and germline-like piRNA biogenesis. However, using an in vitro cell line model, we revealed a possible role for a short PIWIL2/HILI isoform expressed in TGCTs in posttranscriptional regulation of the youngest members of LINE and SINE classes of transposable elements. Importantly, this regulation is also implemented without involvement of germline-like biogenesis of piRNAs. Conclusions Though further studies are warranted, these findings suggest that the conventional germline-like PIWI/piRNA pathway is lost in transition from germ cells to GCNIS cells

    Small RNA F6 Provides <i>Mycobacterium smegmatis</i> Entry into Dormancy

    No full text
    Regulatory small non-coding RNAs play a significant role in bacterial adaptation to changing environmental conditions. Various stresses such as hypoxia and nutrient starvation cause a reduction in the metabolic activity of Mycobacterium smegmatis, leading to entry into dormancy. We investigated the functional role of F6, a small RNA of M. smegmatis, and constructed an F6 deletion strain of M. smegmatis. Using the RNA-seq approach, we demonstrated that gene expression changes that accompany F6 deletion contributed to bacterial resistance against oxidative stress. We also found that F6 directly interacted with 5′-UTR of MSMEG_4640 mRNA encoding RpfE2, a resuscitation-promoting factor, which led to the downregulation of RpfE2 expression. The F6 deletion strain was characterized by the reduced ability to enter into dormancy (non-culturability) in the potassium deficiency model compared to the wild-type strain, indicating that F6 significantly contributes to bacterial adaptation to non-optimal growth conditions
    corecore