11 research outputs found
Π£Π»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π»Π΅Π³ΠΊΠΈΡ ΠΏΡΠΈ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ
In the last few decades the content of diagnostic information provided by ultrasound examination of the chest in a wide spectrum of diseases (pneumonia, peripheral tumors, pleural diseases, pneumothorax) has been widely discussed. The advantages of ultrasound examination (the lack of radiation exposure, image in real time, the distinct visualization of pulmonary subpleural portions and costal diaphragmatic sinuses) provide the possibility to use ultrasound in pediatric practice for frequent monitoring of pneumonia dynamics. The use of ultrasound examination in the diagnostic algorithm in adult patients with pneumonia is not widely used in Russian clinical practice.The article gives the details about the technique of ultrasound examination of the chest, ultrasound anatomy, the impact of the morphological substrate of the pathological formation on the ultrasound picture, and its localization and length. The review of bibliography data about ultrasound semiotics of pneumonia depending on the type of inflammatory infiltrate (hypo and hyperechoic structure of various shapes, length, artifacts, A-line, -line). The necessity of ultrasound use for monitoring pneumonia in order to assess the therapy efficacy has been proven (this is a very strong statement, I would say it βhas been supportedβ.It is indicated that the possibility of ultrasound examination depending on morphological forms of inflammation has not been disclosed and there are no data about the comparison of ultrasound, X-ray and computed tomography. The recommended frequency of the ultrasound monitoring of different inflammatory lung diseases has not yet been determined (this makes it sound like there are no results).This article indicates that ultrasound examination can take its important place as an option in the diagnosis in patients with inflammatory lung diseases due to the safety and wide availability of this method in combination with the CDK.Β Π ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π΄Π΅ΡΡΡΠΈΠ»Π΅ΡΠΈΡ ΡΠΈΡΠΎΠΊΠΎ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠ° ΠΏΡΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΠΎΠΌ ΡΠΏΠ΅ΠΊΡΡΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΎΡΠ³Π°Π½ΠΎΠ² Π³ΡΡΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠΈ (ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΡ, ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΌΠ½ΡΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ ΠΏΠ»Π΅Π²ΡΡ, ΠΏΠ½Π΅Π²ΠΌΠΎΡΠΎΡΠ°ΠΊΡ). ΠΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π»ΡΡΠ΅Π²ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π² ΡΠ΅Π°Π»ΡΠ½ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΎΡΡΠ΅ΡΠ»ΠΈΠ²Π°Ρ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΡΠ±ΠΏΠ»Π΅Π²ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΠ΄Π΅Π»ΠΎΠ² Π»Π΅Π³ΠΊΠΈΡ
ΠΈ ΡΠ΅Π±Π΅ΡΠ½ΠΎ-Π΄ΠΈΠ°ΡΡΠ°Π³ΠΌΠ°Π»ΡΠ½ΡΡ
ΡΠΈΠ½ΡΡΠΎΠ² β Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊ Π² ΠΏΠ΅Π΄ΠΈΠ°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΠ°ΡΡΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ΅ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π²Π·ΡΠΎΡΠ»ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠΈΠ½Π³Π΅Π½ΡΠ° Ρ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠ΅ΠΉ Π² ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΡΠΈΡΠΎΠΊΠΎ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ.Π ΡΡΠ°ΡΡΠ΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΈΠ·Π»Π°Π³Π°ΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ³Π°Π½ΠΎΠ² Π³ΡΡΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅ΡΠΊΠΈ, ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²Π°Ρ Π°Π½Π°ΡΠΎΠΌΠΈΡ, ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²Π°Ρ ΠΊΠ°ΡΡΠΈΠ½Π° Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ±ΡΡΡΠ°ΡΠ° ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, Π΅Π³ΠΎ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ, ΠΏΡΠΎΡΡΠΆΠ΅Π½Π½ΠΎΡΡΠΈ.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΎΠ±Π·ΠΎΡ Π±ΠΈΠ±Π»ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
ΠΎΠ± ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠΉ ΡΠ΅ΠΌΠΈΠΎΡΠΈΠΊΠ΅ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΉ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΈΠΏΠ° Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠΈΠ»ΡΡΡΠ°ΡΠ° (Π³ΠΈΠΏΠΎ-ΠΈ Π³ΠΈΠΏΠ΅ΡΡΡ
ΠΎΠ³Π΅Π½Π½ΡΠ΅ ΡΡΡΡΠΊΡΡΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ, ΠΏΡΠΎΡΡΠΆΠ΅Π½Π½ΠΎΡΡΠΈ, Π°ΡΡΠ΅ΡΠ°ΠΊΡΡ, Π-Π»ΠΈΠ½ΠΈΠΈ, Π-Π»ΠΈΠ½ΠΈΠΈ). ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠ° Π΄Π»Ρ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΠΈ Ρ ΡΠ΅Π»ΡΡ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ.Π£ΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄ΠΎ Π½Π°ΡΡΠΎΡΡΠ΅Π³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π΅ ΡΠ°ΡΠΊΡΡΡΡ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΌΡ Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ, Π½Π΅Ρ Π΄Π°Π½Π½ΡΡ
ΠΎ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΠ΅ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π»Π΅Π³ΠΊΠΈΡ
.ΠΠ²ΠΈΠ΄Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠΈΡΠΎΠΊΠΎΠΉ Π΄ΠΎΡΡΡΠΏΠ½ΠΎΡΡΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅ΠΆΠΈΠΌΠ° ΡΠ²Π΅ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΏΠΏΠ»Π΅ΡΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΊΠ°ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π·Π°Π½ΡΡΡ Π½Π°Π΄Π»Π΅ΠΆΠ°ΡΠ΅Π΅ ΠΌΠ΅ΡΡΠΎ Π² Π°Π»Π³ΠΎΡΠΈΡΠΌΠ΅ Π»ΡΡΠ΅Π²ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ Π»Π΅Π³ΠΊΠΈΡ
.
Ultrasound examination of pneumonia-infected lungs
In the last few decades the content of diagnostic information provided by ultrasound examination of the chest in a wide spectrum of diseases (pneumonia, peripheral tumors, pleural diseases, pneumothorax) has been widely discussed. The advantages of ultrasound examination (the lack of radiation exposure, image in real time, the distinct visualization of pulmonary subpleural portions and costal diaphragmatic sinuses) provide the possibility to use ultrasound in pediatric practice for frequent monitoring of pneumonia dynamics. The use of ultrasound examination in the diagnostic algorithm in adult patients with pneumonia is not widely used in Russian clinical practice.The article gives the details about the technique of ultrasound examination of the chest, ultrasound anatomy, the impact of the morphological substrate of the pathological formation on the ultrasound picture, and its localization and length. The review of bibliography data about ultrasound semiotics of pneumonia depending on the type of inflammatory infiltrate (hypo and hyperechoic structure of various shapes, length, artifacts, A-line, -line). The necessity of ultrasound use for monitoring pneumonia in order to assess the therapy efficacy has been proven (this is a very strong statement, I would say it βhas been supportedβ.It is indicated that the possibility of ultrasound examination depending on morphological forms of inflammation has not been disclosed and there are no data about the comparison of ultrasound, X-ray and computed tomography. The recommended frequency of the ultrasound monitoring of different inflammatory lung diseases has not yet been determined (this makes it sound like there are no results).This article indicates that ultrasound examination can take its important place as an option in the diagnosis in patients with inflammatory lung diseases due to the safety and wide availability of this method in combination with the CDK
Photoinduced Processes in Lysine-Tryptophan-Lysine Tripeptide with L and D Tryptophan
Optical isomers of short peptide Lysine-Tryptophan-Lysine (Lys-{L/D-Trp}-Lys) and Lys-Trp-Lys with an acetate counter-ion were used to study photoinduced intramolecular and intermolecular processes of interest in photobiology. A comparison of L- and D-amino acid reactivity is also the focus of scientistsβ attention in various specialties because today, the presence of amyloid proteins with D-amino acids in the human brain is considered one of the leading causes of Alzheimerβs disease. Since aggregated amyloids, mainly AΞ²42, are highly disordered peptides that cannot be studied with traditional NMR and X-ray techniques, it is trending to explore the reasons for differences between L- and D-amino acids using short peptides, as in our article. Using NMR, chemically induced dynamic nuclear polarization (CIDNP) and fluorescence techniques allowed us to detect the influence of tryptophan (Trp) optical configuration on the peptides fluorescence quantum yields, bimolecular quenching rates of Trp excited state, and the photocleavage products formation. Thus, compared with the D-analog, the L-isomer shows a greater Trp excited state quenching efficiency with the electron transfer (ET) mechanism. There are experimental confirmations of the hypothesis about photoinduced ET between Trp and the CONH peptide bond, as well as between Trp and another amide group
Optical Configuration Effect on the Structure and Reactivity of Diastereomers Revealed by Spin Effects and Molecular Dynamics Calculations
The peculiarities of spin effects in photoinduced electron transfer (ET) in diastereomers of donor-acceptor dyads are considered in order to study the influence of chirality on reactivity. Thus, the spin selectivity—the difference between the enhancement coefficients of chemically induced dynamic nuclear polarization (CIDNP)—of the dyad’s diastereomers reflects the difference in the spin density distribution in its paramagnetic precursors that appears upon UV irradiation. In addition, the CIDNP coefficient itself has demonstrated a high sensitivity to the change of chiral centers: when one center is changed, the hyperpolarization of all polarized nuclei of the molecule is affected. The article analyzes the experimental values of spin selectivity based on CIDNP calculations and molecular dynamic modeling data in order to reveal the effect of optical configuration on the structure and reactivity of diastereomers. In this way, we succeeded in tracing the differences in dyads with L- and D-tryptophan as an electron donor. Since the replacement of L-amino acid with D-analog in specific proteins is believed to be the cause of Alzheimer’s and Parkinson’s diseases, spin effects and molecular dynamic simulation in model dyads can be a useful tool for investigating the nature of this phenomenon