30 research outputs found

    Retinoids Enhance the Expression of Cathelicidin Antimicrobial Peptide during Reactive Dermal Adipogenesis

    No full text
    A subset of dermal fibroblasts undergo rapid differentiation into adipocytes in response to infection and acutely produce the cathelicidin antimicrobial peptide gene Camp Vitamin A and other retinoids inhibit adipogenesis yet can show benefit to skin disorders, such as cystic acne, that are exacerbated by bacteria. We observed that retinoids potently increase and sustain the expression of Camp in preadipocytes undergoing adipogenesis despite inhibition of markers of adipogenesis, such as Adipoq, Fabp4, and Rstn Retinoids increase cathelicidin in both mouse and human preadipocytes, but this enhancement of antimicrobial peptide expression did not occur in keratinocytes or a sebocyte cell line. Preadipocytes undergoing adipogenesis more effectively inhibited growth of Staphylococcus aureus when exposed to retinoic acid. Whole transcriptome analysis identified hypoxia-inducible factor 1-α (HIF-1α) as a mechanism through which retinoids mediate this response. These observations uncouple the lipid accumulation element of adipogenesis from the innate immune response and uncover a mechanism, to our knowledge previously unsuspected, that may explain therapeutic benefits of retinoids in some skin disorders

    Cutaneous innate immune tolerance is mediated by epigenetic control of MAP2K3 by HDAC8/9

    No full text
    The skin typically tolerates exposure to various microbes and chemicals in the environment. Here, we investigated how the epidermis maintains this innate immune tolerance to stimuli that are recognized by Toll-like receptors (TLRs). Loss of tolerance to TLR ligands occurred after silencing of the histone deacetylases (HDACs) HDAC8 and HDAC9 in keratinocytes. Transcriptional analysis identified MAP2K3 as suppressed by HDAC8/9 activity and a potential key intermediary for establishing this tolerance. HDAC8/9 influenced acetylation at H3K9 and H3K27 marks in the MAP2K3 promoter. Proteomic analysis further identified SSRP1 and SUPT16H as associated with HDAC8/9 and responsible for transcriptional elongation of MAP2K3. Silencing of MAP2K3 blocked the capacity of HDAC8/9 to influence cytokine responses. Relevance in vivo was supported by observations of increased MAP2K3 in human inflammatory skin conditions and the capacity of keratinocyte HDAC8/9 to influence dendritic cell maturation and T cell proliferation. Keratinocyte-specific deletion of HDAC8/9 also increased inflammation in mice after exposure to ultraviolet radiation, imiquimod, or Staphylococcus aureus These findings define a mechanism for the epidermis to regulate inflammation in the presence of ubiquitous TLR ligands
    corecore