87 research outputs found

    Mammary tissue microenvironment determines T cell-dependent breast cancer-associated inflammation

    Get PDF
    Although the importance of the host tissue microenvironment in cancer progression and metastasis has been established, the spatiotemporal process establishing a cancer metastasis-prone tissue microenvironment remains unknown. In this study, we aim to understand the immunological character of a metastasis-prone microenvironment in a murine 4T1 breast tumor model, by using the activation of nuclear factor-jb (NF-jB) in cancer cells as a sensor of inflammatory status and by monitoring its activity by bioluminescence imaging. By using a 4T1 breast cancer cell line stably expressing an NF-jB ⁄ Luc2 reporter gene (4T1 NF-jB cells), we observed significantly increased bioluminescence approximately 7 days after metastasis-prone orthotopic mammary fat-pad inoculation but not ectopic s.c. inoculation of 4T1 NF-jB cells. Such in vivo NF-jB activation within the fat-pad 4T1 tumor was diminished in immune-deficient SCID or nude mice, or T celldepleted mice, suggesting the requirement of host T cell-mediated immune responses. Given the fat-pad 4T1 tumor expressed higher inflammatory mediators in a T cell-dependent mechanism compared to the s.c. tumor, our results imply the importance of the surrounding tissue microenvironment for inflaming tumors by collaborating with T cells to instigate metastatic spread of 4T1 breast cancer cells

    MGL2+ Dermal Dendritic Cells Are Sufficient to Initiate Contact Hypersensitivity In Vivo

    Get PDF
    BACKGROUND:Dendritic cells (DCs) are the most potent antigen-presenting cells in the mammalian immune system. In the skin, epidermal Langerhans cells (LCs) and dermal dendritic cells (DDCs) survey for invasive pathogens and present antigens to T cells after migration to the cutaneous lymph nodes (LNs). So far, functional and phenotypic differences between these two DC subsets remain unclear due to lack of markers to identify DDCs. METHODOLOGY/PRINCIPAL FINDINGS:In the present report, we demonstrated that macrophage galactose-type C-type lectin (MGL) 2 was exclusively expressed in the DDC subset in the skin-to-LN immune system. In the skin, MGL2 was expressed on the majority (about 88%) of MHCII(+)CD11c(+) cells in the dermis. In the cutaneous LN, MGL2 expression was restricted to B220(-)CD8alpha(lo)CD11b(+)CD11c(+)MHCII(hi) tissue-derived DC. MGL2(+)DDC migrated from the dermis into the draining LNs within 24 h after skin sensitization with FITC. Distinct from LCs, MGL2(+)DDCs localized near the high endothelial venules in the outer T cell cortex. In FITC-induced contact hypersensitivity (CHS), adoptive transfer of FITC(+)MGL2(+)DDCs, but not FITC(+)MGL2(-)DCs into naive mice resulted in the induction of FITC-specific ear swelling, indicating that DDCs played a key role in initiation of immune responses in the skin. CONCLUSIONS/SIGNIFICANCE:These results demonstrated the availability of MGL2 as a novel marker for DDCs and suggested the contribution of MGL2(+) DDCs for initiating CHS

    Non-clinical studies for oncology drug development

    Get PDF
    Non-clinical studies are necessary at each stage of the development of oncology drugs. Many experimental cancer models have been developed to investigate carcinogenesis, cancer progression, metastasis, and other aspects in cancer biology and these models turned out to be useful in the efficacy evaluation and the safety prediction of oncology drugs. While the diversity and the degree of engagement in genetic changes in the initiation of cancer cell growth and progression are widely accepted, it has become increasingly clear that the roles of host cells, tissue microenvironment, and the immune system also play important roles in cancer. Therefore, the methods used to develop oncology drugs should continuously be revised based on the advances in our understanding of cancer. In this review, we extensively summarize the effective use of those models, their advantages and disadvantages, ranges to be evaluated and limitations of the models currently used for the development and for the evaluation of oncology drugs

    APPLICATION OF THE FERRITIN-LABELING TECHNIQUE TO THE STUDY OF THE MOLECULAR ARCHITECTURE OF CELL MEMBRANES

    No full text

    Editorial introduction

    No full text
    • …
    corecore