22 research outputs found

    Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis

    Get PDF
    AbstractMorphogenesis is a fascinating but complex and incompletely understood developmental process. The sensory lateral line system consists of only a few hundred cells and is experimentally accessible making it an excellent model system to interrogate the cellular and molecular mechanisms underlying segmental morphogenesis. The posterior lateral line primordium periodically deposits prosensory organs as it migrates to the tail tip. We demonstrate that periodic proneuromast deposition is governed by a fundamentally different developmental mechanism than the classical models of developmental periodicity represented by vertebrate somitogenesis and early Drosophila development. Our analysis demonstrates that proneuromast deposition is driven by periodic lengthening of the primordium and a stable Wnt/β-catenin activation domain in the leading region of the primordium. The periodic lengthening of the primordium is controlled by Wnt/β-catenin/Fgf-dependent proliferation. Once proneuromasts are displaced into the trailing Wnt/β-catenin-free zone they are deposited. We have previously shown that Wnt/β-catenin signaling induces Fgf signaling and that interactions between these two pathways regulate primordium migration and prosensory organ formation. Therefore, by coordinating migration, prosensory organ formation and proliferation, localized activation of Wnt/β-catenin signaling in the leading zone of the primordium plays a crucial role in orchestrating lateral line morphogenesis

    The development of lateral line placodes: Taking a broader view

    Get PDF
    AbstractThe lateral line system of anamniote vertebrates enables the detection of local water movement and weak bioelectric fields. Ancestrally, it comprises neuromasts – small sense organs containing mechanosensory hair cells – distributed in characteristic lines over the head and trunk, flanked on the head by fields of electroreceptive ampullary organs, innervated by afferent neurons projecting respectively to the medial and dorsal octavolateral nuclei in the hindbrain. Given the independent loss of the electrosensory system in multiple lineages, the development and evolution of the mechanosensory and electrosensory components of the lateral line must be dissociable. Nevertheless, the entire system arises from a series of cranial lateral line placodes, which exhibit two modes of sensory organ formation: elongation to form sensory ridges that fragment (with neuromasts differentiating in the center of the ridge, and ampullary organs on the flanks), or migration as collectives of cells, depositing sense organs in their wake. Intensive study of the migrating posterior lateral line placode in zebrafish has yielded a wealth of information concerning the molecular control of migration and neuromast formation in this migrating placode, in this cypriniform teleost species. However, our mechanistic understanding of neuromast and ampullary organ formation by elongating lateral line placodes, and even of other zebrafish lateral line placodes, is sparse or non-existent. Here, we attempt to highlight the diversity of lateral line development and the limits of the current research focus on the zebrafish posterior lateral line placode. We hope this will stimulate a broader approach to this fascinating sensory system

    Parallel control of mechanosensory hair cell orientation by the PCP and Wnt pathways

    Get PDF
    Cell polarity plays a crucial role during development of vertebrates and invertebrates. Planar Cell Polarity (PCP) is defined as the coordinated polarity of cells within a tissue axis and is essential for processes such as gastrulation, neural tube closure or hearing. Wnt ligands can be instructive or permissive during PCP-dependent processes, and Wnt pathway mutants are often classified as PCP mutants due to the complexity and the similarities between their phenotypes. Our studies of the zebrafish sensory lateral line reveal that disruptions of the PCP and Wnt pathways have differential effects on hair cell orientations. While mutations in PCP genes cause random orientations of hair cells, mutations in Wnt pathway members induce hair cells to adopt a concentric pattern. We show that PCP signaling is normal in hair cells of Wnt pathway mutants and that the concentric hair cell phenotype is due to altered organization of the surrounding support cells. Thus, the PCP and Wnt pathways work in parallel, as separate pathways to establish proper hair cell orientation. Our data suggest that coordinated support cell organization is established during the formation of lateral line primordia, much earlier than the appearance of hair cells. Together, these finding reveal that hair cell orientation defects are not solely explained by defects in PCP signaling and that some hair cell phenotypes warrant reevaluation

    Hypoxia Disruption of Vertebrate CNS Pathfinding through EphrinB2 Is Rescued by Magnesium

    Get PDF
    The mechanisms of hypoxic injury to the developing human brain are poorly understood, despite being a major cause of chronic neurodevelopmental impairments. Recent work in the invertebrate Caenorhabditis elegans has shown that hypoxia causes discrete axon pathfinding errors in certain interneurons and motorneurons. However, it is unknown whether developmental hypoxia would have similar effects in a vertebrate nervous system. We have found that developmental hypoxic injury disrupts pathfinding of forebrain neurons in zebrafish (Danio rerio), leading to errors in which commissural axons fail to cross the midline. The pathfinding defects result from activation of the hypoxia-inducible transcription factor (hif1) pathway and are mimicked by chemical inducers of the hif1 pathway or by expression of constitutively active hif1α. Further, we found that blocking transcriptional activation by hif1α helped prevent the guidance defects. We identified ephrinB2a as a target of hif1 pathway activation, showed that knock-down of ephrinB2a rescued the guidance errors, and showed that the receptor ephA4a is expressed in a pattern complementary to the misrouting axons. By targeting a constitutively active form of ephrinB2a to specific neurons, we found that ephrinB2a mediates the pathfinding errors via a reverse-signaling mechanism. Finally, magnesium sulfate, used to improve neurodevelopmental outcomes in preterm births, protects against pathfinding errors by preventing upregulation of ephrinB2a. These results demonstrate that evolutionarily conserved genetic pathways regulate connectivity changes in the CNS in response to hypoxia, and they support a potential neuroprotective role for magnesium

    Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration

    Get PDF
    SummaryCollective cell migration is a highly regulated morphogenetic movement during embryonic development and cancer invasion that involves the precise orchestration and integration of cell-autonomous mechanisms and environmental signals. Coordinated lateral line primordium migration is controlled by the regulation of chemokine receptors via compartmentalized Wnt/β-catenin and fibroblast growth factor (Fgf) signaling. Analysis of mutations in two exostosin glycosyltransferase genes (extl3 and ext2) revealed that loss of heparan sulfate (HS) chains results in a failure of collective cell migration due to enhanced Fgf ligand diffusion and loss of Fgf signal transduction. Consequently, Wnt/β-catenin signaling is activated ectopically, resulting in the subsequent loss of the chemokine receptor cxcr7b. Disruption of HS proteoglycan (HSPG) function induces extensive, random filopodia formation, demonstrating that HSPGs are involved in maintaining cell polarity in collectively migrating cells. The HSPGs themselves are regulated by the Wnt/β-catenin and Fgf pathways and thus are integral components of the regulatory network that coordinates collective cell migration with organ specification and morphogenesis

    Identification of Wnt Genes Expressed in Neural Progenitor Zones during Zebrafish Brain Development.

    No full text
    Wnt signaling regulates multiple aspects of vertebrate central nervous system (CNS) development, including neurogenesis. However, vertebrate genomes can contain up to 25 Wnt genes, the functions of which are poorly characterized partly due to redundancy in their expression. To identify candidate Wnt genes as candidate mediators of pathway activity in specific brain progenitor zones, we have performed a comprehensive expression analysis at three different stages during zebrafish development. Antisense RNA probes for 21 Wnt genes were generated from existing and newly synthesized cDNA clones and used for in situ hybridization on whole embryos and dissected brains. As in other species, we found that Wnt expression patterns in the embryonic zebrafish CNS are complex and often redundant. We observed that progenitor zones in the telencephalon, dorsal diencephalon, hypothalamus, midbrain, midbrain-hindbrain boundary, cerebellum and retina all express multiple Wnt genes. Our data identify 12 specific ligands that can now be tested using loss-of-function approaches

    <i>Wnt</i> gene expression at 72 hpf.

    No full text
    <p>Dorsal or ventral views of dissected brains are shown in all panels. p, pallium; sp, subpallium; et, epithalamus; th, thalamus; pr, posterior recess; mb, midbrain; mhb, midbrain-hindbrain boundary; cb, cerebellum; fp, floor plate.</p
    corecore