766 research outputs found

    Phase Difference Between the Electromagnetic and Strong Amplitudes for psi(2S) and J/psi Decays into Pairs of Pseudoscalar Mesons

    Full text link
    Using the data for 24.5x10^6 psi(2S) produced in e^+e^- annihilations at sqrt{s}=3686 MeV at the CESR-c e^+e^- collider and 8.6x10^6 J/psi produced in the decay psi(2S)->pi^+pi^-J/psi, the branching fractions for psi(2S) and J/psi decays to pairs of pseudoscalar mesons, pi^+pi^-, K^+K^-, and K_S K_L, have been measured using the CLEO-c detector. We obtain branching fractions Br(psi(2S)->pi^+pi^-)=(7.6+-2.5+-0.6)x10^-6, Br(psi(2S)->K^+K^-)=(74.8+-2.3+-3.9)x10^-6, Br(psi(2S)->K_S K_L)=(52.8+-2.5+-3.4)x10^-6, and Br(J/psi->pi^+pi^-)=(1.47+-0.13+-0.13)x10^-4, Br(J/psi->K^+K^-)=(2.86+-0.09+-0.19)x10^-4, Br(J/psi+-K_S K_L)=(2.62+-0.15+-0.14)x10^-4, where the first errors are statistical and the second errors are systematic. The phase differences between the amplitudes for electromagnetic and strong decays of psi(2S) and J/psi to 0^{-+} pseudoscalar pairs are determined by a Monte Carlo method to be \delta(psi(2S)_{PP}=(110.5^{+16.0}_{-9.5})^o and \delta(J/psi)_{PP}=(73.5^{+5.0}_{-4.5})^o. The difference between the two is \Delta\delta = \delta(psi(2S))_{PP}-\delta(J/psi)_{PP} =(37.0^{+16.5}_{-10.5})^o.Comment: 16 pages, 5 figures, submitted to PR

    Search for the decay B+K0K+B^+\rightarrow\overline{K}{}^{*0}K^{*+} at Belle

    Full text link
    We report a search for the rare charmless decay B+K0K+B^+\rightarrow\overline{K}{}^{*0}K^{*+} using a data sample of 772×106772\times10^6 BBˉB\bar{B} pairs collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+ee^+e^- collider. No statistically significant signal is found and a 90% confidence-level upper limit is set on the decay branching fraction as B(B+K0K+)<1.31×106 \mathcal{B}(B^+\rightarrow\overline{K}{}^{*0}K^{*+}) <1.31\times 10^{-6}.Comment: 8 pages, 3 figures, submitted to PRD(RC

    Search for double charmonium decays of the P-wave spin-triplet bottomonium states

    Full text link
    Using a sample of 158 million Υ(2S)\Upsilon(2S) events collected with the Belle detector, we search for the first time for double charmonium decays of the PP-wave spin-triplet bottomonium states (Υ(2S)γχbJ\Upsilon(2S) \to \gamma \chi_{bJ}, \chi_{bJ} \to \jpsi \jpsi, \jpsi \psp, \psp \psp for J=0, 1, and 2). No significant χbJ\chi_{bJ} signal is observed in the double charmonium mass spectra, and we obtain the following upper limits, \BR(\chi_{bJ} \to \jpsi \jpsi)<7.1\times 10^{-5}, 2.7×1052.7\times 10^{-5}, 4.5×1054.5\times 10^{-5}, \BR(\chi_{bJ} \to \jpsi \psp)<1.2\times 10^{-4}, 1.7×1051.7\times 10^{-5}, 4.9×1054.9\times 10^{-5}, \BR(\chi_{bJ} \to \psp \psp)<3.1\times 10^{-5}, 6.2×1056.2\times 10^{-5}, 1.6×1051.6\times 10^{-5} for J=0, 1, and 2, respectively, at the 90% confidence level. These limits are significantly lower than the central values (with uncertainties of 50% to 70%) predicted using the light cone formalism but are consistent with calculations using the NRQCD factorization approach.Comment: 7 pages, 4 figures, 1 tabl

    Studies of the decays D^0 \rightarrow K_S^0K^-\pi^+ and D^0 \rightarrow K_S^0K^+\pi^-

    Full text link
    The first measurements of the coherence factor R_{K_S^0K\pi} and the average strong--phase difference \delta^{K_S^0K\pi} in D^0 \to K_S^0 K^\mp\pi^\pm decays are reported. These parameters can be used to improve the determination of the unitary triangle angle \gamma\ in B^- \rightarrow D~K\widetilde{D}K^- decays, where D~\widetilde{D} is either a D^0 or a D^0-bar meson decaying to the same final state, and also in studies of charm mixing. The measurements of the coherence factor and strong-phase difference are made using quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^- collisions at the \psi(3770) resonance. The measured values are R_{K_S^0K\pi} = 0.70 \pm 0.08 and \delta^{K_S^0K\pi} = (0.1 \pm 15.7)^\circ for an unrestricted kinematic region and R_{K*K} = 0.94 \pm 0.12 and \delta^{K*K} = (-16.6 \pm 18.4)^\circ for a region where the combined K_S^0 \pi^\pm invariant mass is within 100 MeV/c^2 of the K^{*}(892)^\pm mass. These results indicate a significant level of coherence in the decay. In addition, isobar models are presented for the two decays, which show the dominance of the K^*(892)^\pm resonance. The branching ratio {B}(D^0 \rightarrow K_S^0K^+\pi^-)/{B}(D^0 \rightarrow K_S^0K^-\pi^+) is determined to be 0.592 \pm 0.044 (stat.) \pm 0.018 (syst.), which is more precise than previous measurements.Comment: 38 pages. Version 3 updated to include the erratum information. Errors corrected in Eqs (25), (26), 28). Fit results updated accordingly, and external inputs updated to latest best known values. Typo corrected in Eq(3)- no other consequence

    Search for CP Violation in the Decay D+KS0K+D^+\rightarrow K^0_S K^+

    Full text link
    We search for CP violation in the decay D+KS0K+D^+\rightarrow K^0_S K^+ using a data sample with an integrated luminosity of 977 fb1^{-1} collected with the Belle detector at the KEKB e+ee^+e^- asymmetric-energy collider. No CP violation has been observed and the CP asymmetry in D+KS0K+D^+\rightarrow K^0_S K^+ decay is measured to be (0.25±0.28±0.14)(-0.25\pm0.28\pm0.14)%, which is the most sensitive measurement to date. After subtracting CP violation due to K0Kˉ0K^0-\bar{K}^0 mixing, the CP asymmetry in D+Kˉ0K+D^+\rightarrow\bar{K}^0 K^+ decay is found to be (+0.08±0.28±0.14)(+0.08\pm0.28\pm0.14)%.Comment: 15 pages, 4 figures, 1 table. Published in JHE

    Search for CP Violation in D Meson Decays to phi pi+

    Full text link
    We search for CP violation in Cabibbo-suppressed charged D meson decays by measuring the difference between the CP violating asymmetries for the Cabibbo-suppressed decays D+ -> K+K-pi+ and the Cabibbo-favored decays Ds -> K+K-pi+ in the K+K- mass region of the phi resonance. Using 955/fb of data collected with the Belle detector we obtain A_CP(D+ -> phi pi+) = (+0.51 +- 0.28 +- 0.05)%. The measurement improves the sensitivity of previous searches by more than a factor of five. We find no evidence for direct CP violation.Comment: submitted to PR
    corecore