64 research outputs found

    Aggregation of cation-anionic and related polymethine dyes

    Get PDF
    Absorption, fluorescence, and fluorescence excitation spectra were studied for a number of cation-anionic and related anionic polymethine dyes in weakly polarand nonpolarsolvents, as well as in binary mixtures of solvents of different polarity. For some dyes, aggregation is observed in toluene or acetonitrile-toluene mixtures with low amounts of acetonitrile, which is revealed as appearance of new absorption bands and/or broadening of the initial bands of a monomeric dye. Solvent mixtures butyronitrilehexane with low butyronitrile content were found to greatly stimulate the formation of dye aggregates for most of the dyes studied. The absorption spectra of the aggregates are often blue-shifted with respect to the corresponding absorption spectra of parent monomeric dyes and/or represent broad continuums located both in the blue and red regions. For one of the cation-anionic dyes studied, which consists of 3,3′-diethylthiamonomethinecyanine cation and trimethinebenzoxanine anion, fluorescent aggregates were observed; their broad fluorescence band is located in the long-wavelength region. For this dye, gradual transition from nonfluorescent aggregates to fluorescent ones and then to monomeric ion pairs and dissociated ions was observed in butyronitrile-hexane mixtures with growing butyronitrile content

    Complex formation between 3;3´-diethylthiacarbocyanine iodide and DNA and its investigation in aqueous solution

    No full text
    The binding of 3;3′-diethylthiacarbocyanine iodide (DTCC) with molecules of DNA was investigated by different photochemical methods. Absorption spectra were investigated under various concentration of DNA. Isosbestic points observed in these spectra are attributable to existence of two different complexes DTCC with DNA. Equilibrium constants of the formation of complexes I and II were determined (K1≈106M−1, K2≈5×104M−1 accordingly). Differential absorption spectra of two photoisomers of DTCC were obtained by flash photolysis method; it was found that the quantum yield of the short-lived photoisomer decreases and the quantum yield of the second long-lived photoisomer builds up with the increase in the DNA concentration. Kinetics of interaction between the triplet state of the dye and oxygen were investigated under various concentration of DNA. The growth of the quantum yield of fluorescence and intersystem crossing was observed with the increase in the DNA concentration

    Electronic structure and photochemistry of squaraine dyes: basic theoretical analysis and direct detection of the photoisomer of a symmetrical squarylium cyanine

    No full text
    The photoisomerization kinetics of a squaraine dye has been the object both of experimental investigation and of interpretation in the framework of a qualitative theoretical model formulated by the aid of simple HMO calculations and orbital symmetry considerations. Such a model has first confirmed that the electronic structure and the spectroscopic properties of symmetrical squaraines are related to those of the parent cyanines, with ketocyanines as intermediate systems. Extension of the approach to structures twisted by 90degrees about a polymethine bond has then provided insight into the electronic aspects and the mechanism of the photoisomerization of the squaraine under study. The reaction, previously indirectly investigated by. uorescence analysis, has been directly monitored by laser. ash photolysis. These experiments indicate that, while photoisomerization is likely the main radiationless decay route from the spectroscopic minimum of the lowest excited singlet state (S-1), the cis photoisomer is produced with only a 1% yield, likely because of an unfavourable cis/trans branching ratio from the perpendicular minimum of the S-1-state potential energy surface. In contrast with what found for symmetrical cyanines, an increase in the solvent polarity was found to accelerate both the direct, excited-state reaction and, to a much larger extent, the ground-state back-isomerization. Such observations are consistent with predictions of the theoretical model and provide a clue for the identification of the isomerization coordinate

    Effects of chromophore interaction in photophysics and photochemistry of cyanine dyes

    No full text
    Abstract. Spectral and fluorescent properties of ketocyanine dyes (polyenic bis-ω, ω -aminoketones) and cation-anionic polymethine dyes of various structures were studied. The symmetric ketocyanines were shown to have a long-wavelength absorption band bathochromically shifted in comparison with that of the asymmetric ketocyanines with the same total length of the polyenic chain. The nonlinear ketocyanines exhibit the additional short-wavelength band in their absorption spectra, which can be more intense than the longwavelength band. The absorption spectra of ion pairs of cation-anionic dyes with overlapping cation and anion bands contain a new intense short-wavelength band inactive in fluorescence excitation. These spectral peculiarities are explained on the basis of chromophore interaction model. It has also been shown that the T 1 levels of ketocyanine chromophores do not essentially interact with each other in a ketocyanine molecule in nonpolar solvents; in polar solvents this interaction becomes appreciable due to lowering the potential barrier for conjugation

    Exciton-like and charge-transfer states in cyanine-oxonol ion pairs. An experimental and theoretical study

    No full text
    Absorption and fluorescence emission properties of cyanine-oxonol mixed dyes, i.e., salts formed by a cationic cyanine with an anionic oxonol as counterion, were investigated both theoretically and experimentally in order to probe the effects of ion pairing occurring in low-polarity solvents. We analyzed, in particular, three model systems (S1, S2, and S3) built combining thiacarbo- and thiadicarbocyanine (C1, C2) with two vinylogous oxonol chromophores (A1/A1F, A2). in systems S1 (C1-A1) and S2 (C2-A2), where the visible absorption bands of the individual ions are almost superimposed, the formation of ion pairs gives rise to marked spectral alterations traceable to interchromophore resonance interactions. On the contrary, in system 53 (C2-A1F), whose components absorb widely apart, the spectrum of the contact ion pair and that of the dissociated form differ only for the relative band intensities. In both cases, however, contact ion pairing results in complete quenching of the emission of the chromophoric units. Such behaviors, emphasized by absorption and fluorescence emission and excitation spectra of both the mixed dyes and their components in solvents of different polarities, were the subject of a theoretical study based in particular on the calculation of structures and electronic spectra of the contact ion pairs. Molecular dynamics (MD) simulations and local full geometry optimizations led to two types of structures characterized by almost parallel and orthogonal arrangements of the long molecular axes. CS INDO SCI calculations using both arrangements emphasized the role of the exciton coupling between the local HOMO-LUMO excitations of the two chromophoric units. The most striking spectral characteristics in low-polarity solvent turned out to be explainable in terms of parallel type arrangements, even if an appreciable contribution of the orthogonal type structure was to be invoked for a complete interpretation of the S1 spectral properties. In all contact ion pairs, independently of the structure, the lowest excited singlet is a forbidden anion --> cation charge transfer (CT) state explaining why no fluorescence emission was observed in such systems

    Photoisomerization of simple merocyanines: a theoretical and experimental comparison with polyenes and symmetric cyanines

    No full text
    The structure and electronic spectra of merocyanines are intermediate between those of acyclic polyenes and cationic symmetric cyanines of comparable sizes, shifting from one to the other as a result of a solvent polarity change. In this paper we address, both theoretically and experimentally, the question of how the photochemical behaviour of simple merocyanines compares with that of polyenes and symmetric cyanines. After a brief theoretical re-appraisal of the absorption maxima dependence on the chain length in the three classes of chromogens, we analyse the calculated potential-energy curves for two photoisomerization coordinates of a polyene, a symmetric cyanine and a merocyanine of comparable sizes. The results concerning both the energy curves and the nature of the relevant electronic states, particularly the TICT (twisted intramolecular charge transfer) character of the S-1 state at the perpendicular geometry, reveal the existence of a near relationship between merocyanines and symmetric ionic polymethines, traceable back to their being odd-alternant systems. The presence of a low-lying (1)(npi*) state at the trans geometry and the associated solvent-modulated vibronic coupling with the (1)(pi(H)pi(L)*) state dominate the experimentally accessible photochemical behaviour of two simple merocyanines and make it peculiar with respect to those of both polyenes and symmetric ionic cyanines
    corecore