18 research outputs found

    Necrotizing Enterocolitis: The Role of Hypoxia, Gut Microbiome, and Microbial Metabolites

    No full text
    Necrotizing enterocolitis (NEC) is a life-threatening disease that predominantly affects very low birth weight preterm infants. Development of NEC in preterm infants is accompanied by high mortality. Surgical treatment of NEC can be complicated by short bowel syndrome, intestinal failure, parenteral nutrition-associated liver disease, and neurodevelopmental delay. Issues surrounding pathogenesis, prevention, and treatment of NEC remain unclear. This review summarizes data on prenatal risk factors for NEC, the role of pre-eclampsia, and intrauterine growth retardation in the pathogenesis of NEC. The role of hypoxia in NEC is discussed. Recent data on the role of the intestinal microbiome in the development of NEC, and features of the metabolome that can serve as potential biomarkers, are presented. The Pseudomonadota phylum is known to be associated with NEC in preterm neonates, and the role of other bacteria and their metabolites in NEC pathogenesis is also discussed. The most promising approaches for preventing and treating NEC are summarized

    Necrotizing Enterocolitis: The Role of Hypoxia, Gut Microbiome, and Microbial Metabolites

    No full text
    Necrotizing enterocolitis (NEC) is a life-threatening disease that predominantly affects very low birth weight preterm infants. Development of NEC in preterm infants is accompanied by high mortality. Surgical treatment of NEC can be complicated by short bowel syndrome, intestinal failure, parenteral nutrition-associated liver disease, and neurodevelopmental delay. Issues surrounding pathogenesis, prevention, and treatment of NEC remain unclear. This review summarizes data on prenatal risk factors for NEC, the role of pre-eclampsia, and intrauterine growth retardation in the pathogenesis of NEC. The role of hypoxia in NEC is discussed. Recent data on the role of the intestinal microbiome in the development of NEC, and features of the metabolome that can serve as potential biomarkers, are presented. The Pseudomonadota phylum is known to be associated with NEC in preterm neonates, and the role of other bacteria and their metabolites in NEC pathogenesis is also discussed. The most promising approaches for preventing and treating NEC are summarized

    Structurally Similar Triphenylphosphine-Stabilized Undecagolds, Au<sub>11</sub>(PPh<sub>3</sub>)<sub>7</sub>Cl<sub>3</sub> and [Au<sub>11</sub>(PPh<sub>3</sub>)<sub>8</sub>Cl<sub>2</sub>]Cl, Exhibit Distinct Ligand Exchange Pathways with Glutathione

    No full text
    Ligand exchange is frequently used to introduce new functional groups on the surface of inorganic nanoparticles or clusters while preserving the core size. For one of the smallest clusters, triphenylphosphine (TPP)-stabilized undecagold, there are conflicting reports in the literature regarding whether core size is retained or significant growth occurs during exchange with thiol ligands. During an investigation of these differences in reactivity, two distinct forms of undecagold were isolated. The X-ray structures of the two forms, Au<sub>11</sub>(PPh<sub>3</sub>)<sub>7</sub>Cl<sub>3</sub> and [Au<sub>11</sub>(PPh<sub>3</sub>)<sub>8</sub>Cl<sub>2</sub>]­Cl, differ only in the number of TPP ligands bound to the core. Syntheses were developed to produce each of the two forms, and their spectroscopic features correlated with the structures. Ligand exchange on [Au<sub>11</sub>(PPh<sub>3</sub>)<sub>8</sub>Cl<sub>2</sub>]Cl yields only small clusters, whereas exchange on Au<sub>11</sub>(PPh<sub>3</sub>)<sub>7</sub>Cl<sub>3</sub> (or mixtures of the two forms) yields the larger Au<sub>25</sub> cluster. The distinctive features in the optical spectra of the two forms made it possible to evaluate which of the cluster forms were used in the previously published papers and clarify the origin of the differences in reactivity that had been reported. The results confirm that reactions of clusters and nanoparticles may be influenced by small variations in the arrangement of ligands and suggest that the role of the ligand shell in stabilizing intermediates during ligand exchange may be essential to preventing particle growth or coalescence

    Allosteric Interactions within Subsites of a Monomeric Enzyme: Kinetics of Fluorogenic Substrates of PI-Specific Phospholipase C

    Get PDF
    Two novel water-soluble fluorescein myo-inositol phosphate (FLIP) substrates, butyl-FLIP and methyl-FLIP, were used to examine the kinetics and subsite interactions of Bacillus cereus phosphatidylinositol-specific phospholipase C. Butyl-FLIP exhibited sigmoidal kinetics when initial rates are plotted versus substrate concentration. The data fit a Hill coefficient of 1.2–1.5, suggesting an allosteric interaction between two sites. Two substrate molecules bind to this enzyme, one at the active site and one at a subsite, causing an increase in activity. The kinetic behavior is mathematically similar to that of well-known cooperative multimeric enzymes even though this phosphatidylinositol-specific phospholipase C is a small, monomeric enzyme. The less hydrophobic substrate, methyl-FLIP, binds only to the active site and not the activator site, and thus exhibits standard hyperbolic kinetics. An analytical expression is presented that accounts for the kinetics of both substrates in the absence and presence of a nonsubstrate short-chain phospholipid, dihexanoylphosphatidylcholine. The fluorogenic substrates detect activation at much lower concentrations of dihexanoylphosphatidylcholine than previously reported

    Synthesis of Ligand-Stabilized Metal Oxide Nanocrystals and Epitaxial Core/Shell Nanocrystals <i>via</i> a Lower-Temperature Esterification Process

    No full text
    The properties of metal oxide nanocrystals can be tuned by incorporating mixtures of matrix metal elements, adding metal ion dopants, or constructing core/shell structures. However, high-temperature conditions required to synthesize these nanocrystals make it difficult to achieve the desired compositions, doping levels, and structural control. We present a lower temperature synthesis of ligand-stabilized metal oxide nanocrystals that produces crystalline, monodisperse nanocrystals at temperatures well below the thermal decomposition point of the precursors. Slow injection (0.2 mL/min) of an oleic acid solution of the metal oleate complex into an oleyl alcohol solvent at 230 °C results in a rapid esterification reaction and the production of metal oxide nanocrystals. The approach produces high yields of crystalline, monodisperse metal oxide nanoparticles containing manganese, iron, cobalt, zinc, and indium within 20 min. Synthesis of tin-doped indium oxide (ITO) can be accomplished with good control of the tin doping levels. Finally, the method makes it possible to perform epitaxial growth of shells onto nanocrystal cores to produce core/shell nanocrystals

    Cytokine Storm Signature in Patients with Moderate and Severe COVID-19

    No full text
    Hypercytokinemia, found in SARS-CoV-2 infection, contributes to multiple organ dysfunctions with acute respiratory distress syndrome, shock etc. The aim of this study was to describe cytokine storm signatures in patients with acute COVID-19 and to investigate their influence on severity of the infection. Plasma levels of 47 cytokines were investigated in 73 patients with moderate and severe COVID-19 (41 and 32, respectively) and 11 healthy donors (HD). The most elevated levels comparing patients and the HD were observed for seven pro-inflammatory cytokines (IL-6, IL-8, IL-15, IL-18, IL-27, IFN&gamma;, TNF&alpha;), three chemokines (GRO&alpha;, IP-10, MIG), two anti-inflammatory cytokines (IL-1RA, IL-10), and two growth factors (G-CSF, M-CSF). The patients with severe disease had significantly higher levels of FGF-2/FGF-basic, IL-1&beta;, and IL-7 compared to the HD. The two groups of patients differed from each other only based on the levels of EGF, eotaxin, and IL-12 p40. Pneumonia lung injury, characterized by computer tomography, positively correlated with levels of EGF, IP-10, MCP-3 levels and negatively with IL-12 p40. Pro-inflammatory factors including IL-6, TNF&alpha;, and IP-10 negatively correlated with the frequency of the circulating T-helper17-like cells (Th17-like) and follicular Th cells that are crucial to develop SARS-CoV-2-specific plasma cells and memory B cells. Obtained data on the cytokine levels illustrate their influence on progression and severity of COVID-19

    Vitamin D Status and Immune Response in Hospitalized Patients with Moderate and Severe COVID-19

    No full text
    A low 25-hydroxyvitamin D (25(OH)D) level is considered as an independent risk factor for COVID-19 severity. However, the association between vitamin D status and outcomes in COVID-19 is controversial. In the present study we investigate the association between the serum 25(OH)D level, immune response, and clinical disease course in patients with COVID-19. A total of 311 patients hospitalized with COVID-19 were enrolled. For patients with a vitamin D deficiency/insufficiency, the prevalence of severe COVID-19 was higher than in those with a normal 25(OH)D level (p &lt; 0.001). The threshold of 25(OH)D level associated with mortality was 11.4 ng/mL (p = 0.003, ROC analysis). The frequency of CD3+CD4+ T helper (Th) cells was decreased in patients with 25(OH)D level &le; 11.4 ng/mL, compared to healthy controls (HCs). There were no differences in the frequency of naive, central memory (CM), effector memory (EM), and terminally differentiated effector memory Th cells in patients with COVID-19 compared to HCs. The frequency of T-follicular helpers was decreased both in patients with 25(OH)D level &gt; 11.4 ng/mL (p &lt; 0.001) and 25(OH)D level &le; 11.4 ng/mL (p = 0.003) compared to HCs. Patients with 25(OH)D level &gt; 11.4 ng/mL had an increased frequency of Th2 CM (p = 0.010) and decreased Th17 CM (p &lt; 0.001). While the frequency of Th2 EM was significantly increased, the frequency of Th17 EM was significantly decreased in both groups compared to HCs. Thus, 25(OH)D level is an independent risk factor for the disease severity and mortality in patients with COVID-19. We demonstrate that the serum 25(OH)D level &le; 11.4 ng/mL is associated with the stimulation of Th2 and the downregulation of Th17 cell polarization of the adaptive immunity in patients with COVID-19

    Effect of Cholecalciferol Supplementation on the Clinical Features and Inflammatory Markers in Hospitalized COVID-19 Patients: A Randomized, Open-Label, Single-Center Study

    No full text
    Recent studies showed that a low 25-hydroxyvitamin D (25(OH)D) level was associated with a higher risk of morbidity and severe course of COVID-19. Our study aimed to evaluate the effects of cholecalciferol supplementation on the clinical features and inflammatory markers in patients with COVID-19. A serum 25(OH)D level was determined in 311 COVID-19 patients. Among them, 129 patients were then randomized into two groups with similar concomitant medication. Group I (n = 56) received a bolus of cholecalciferol at a dose of 50,000 IU on the first and the eighth days of hospitalization. Patients from Group II (n = 54) did not receive the supplementation. We found significant differences between groups with the preferential increase in serum 25(OH)D level and Δ 25(OH)D in Group I on the ninth day of hospitalization (p p = 0.006); we did not observe other clinical benefits in patients receiving an oral bolus of cholecalciferol. Moreover, in Group I, neutrophil and lymphocyte counts were significantly higher (p = 0.04; p = 0.02), while the C-reactive protein level was significantly lower on the ninth day of hospitalization (p = 0.02). Patients with supplementation of 100,000 IU of cholecalciferol, compared to those without supplementation, showed a decrease in the frequencies of CD38++CD27 transitional and CD27−CD38+ mature naive B cells (p = 0.006 and p = 0.02) and an increase in the level of CD27−CD38− DN B cells (p = 0.02). Thus, the rise in serum 25(OH)D level caused by vitamin D supplementation in vitamin D insufficient and deficient patients may positively affect immune status and hence the course of COVID-19
    corecore