36 research outputs found

    The Serine Protease Plasmin Triggers Expression of the CC-Chemokine Ligand 20 in Dendritic Cells via

    Get PDF
    The number of dendritic cells is increased in advanced atherosclerotic lesions. In addition, plasmin, which might stimulate dendritic cells, is generated in atherosclerotic lesions. Here, we investigated cytokine and chemokine induction by plasmin in human dendritic cells. In human atherosclerotic vessel sections, plasmin colocalized with dendritic cells and the CC-chemokine ligand 20 (CCL20, MIP-3α), which is important for homing of lymphocytes and dendritic cells to sites of inflammation. Stimulation of human dendritic cells with plasmin, but not with catalytically inactivated plasmin, induced transcriptional regulation of CCL20. By contrast, proinflammatory cytokines such as TNF-α, IL-1α, and IL-1β were not induced. The plasmin-mediated CCL20 expression was preceded by activation of Akt and MAP kinases followed by activation of the transcription factor NF-κB as shown by phosphorylation of its inhibitor IκBα, by nuclear localization of p65, its phosphorylation, and binding to NF-κB consensus sequences. The plasmin-induced CCL20 expression was dependent on Akt- and ERK1/2-mediated phosphorylation of IκBα on Ser32/36 and of p65 on Ser276, whereas p38 MAPK appeared to be dispensable. Thus, plasmin triggers release of the chemokine CCL20 from dendritic cells, which might facilitate accumulation of CCR6+ immune cells in areas of plasmin generation such as inflamed tissues including atherosclerotic lesions

    An α

    No full text

    Thrombin and vascular inflammation

    No full text
    Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation
    corecore