23 research outputs found

    A Previously Healthy Adolescent With Acute Psychosis and Severe Hyperhidrosis

    Get PDF
    A previously healthy 15-year-old boy presented with 3 months of progressive psychosis, insomnia, back and groin pain, and hyperhidrosis. On examination, the patient was disheveled, agitated, and soaked with sweat, with systolic blood pressure in the 160s and heart rate in the 130s. Aside from occasional auditory and visual hallucinations, his neurologic examination was normal. The patient was admitted for an extensive workup, including MRI of the brain and spine and lumbar puncture, which were normal. Through collaboration with various pediatric specialists, including psychiatry and neurology, a rare diagnosis was ultimately unveiled

    Transport of anti-IL-6 antigen binding fragments into cartilage and the effects of injury

    Get PDF
    The efficacy of biological therapeutics against cartilage degradation in osteoarthritis is restricted by the limited transport of macromolecules through the dense, avascular extracellular matrix. The availability of biologics to cell surface and matrix targets is limited by steric hindrance of the matrix, and the microstructure of matrix itself can be dramatically altered by joint injury and the subsequent inflammatory response. We studied the transport into cartilage of a 48 kDa anti-IL-6 antigen binding fragment (Fab) using an in vitro model of joint injury to quantify the transport of Fab fragments into normal and mechanically injured cartilage. The anti-IL-6 Fab was able to diffuse throughout the depth of the tissue, suggesting that Fab fragments can have the desired property of achieving local delivery to targets within cartilage, unlike full-sized antibodies which are too large to penetrate beyond the cartilage surface. Uptake of the anti-IL-6 Fab was significantly increased following mechanical injury, and an additional increase in uptake was observed in response to combined treatment with TNFα and mechanical injury, a model used to mimic the inflammatory response following joint injury. These results suggest that joint trauma leading to cartilage degradation can further alter the transport of such therapeutics and similar-sized macromolecules.National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Grant AR45779)National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Grant AR60331)Janssen Pharmaceutical Ltd. (Research and Development Grant

    Dephosphorylation of β2-syntrophin and Ca(2+)/µ-calpain-mediated cleavage of ICA512 upon stimulation of insulin secretion

    No full text
    Islet cell autoantigen (ICA) 512 is a receptor-tyrosine phosphatase-like protein associated with the secretory granules of neuroendocrine cells, including pancreatic β-cells. Binding of its cytoplasmic tail to β2-syntrophin suggests that ICA512 connects secretory granules to the utrophin complex and the actin cytoskeleton. Here we show that stimulation of insulin secretion from INS-1 cells triggers the biosynthesis of pro-ICA512 and the degradation of its mature form. Inhibition of calpain, which is activated upon stimulation of insulin secretion, prevents the Ca(2+)-dependent proteolysis of ICA512. In vitro µ-calpain cleaves ICA512 between a putative PEST domain and the β2-syntrophin binding site, whereas binding of ICA512 to β2-syntrophin protects the former from cleavage. β2-syntrophin and its F-actin-binding protein utrophin are enriched in subcellular fractions containing secretory granules. ICA512 preferentially binds phospho-β2-syntrophin and stimulation of insulin secretion induces the Ca(2+)-dependent, okadaic acid-sensitive dephosphorylation of β2-syntrophin. Similarly to calpeptin, okadaic acid inhibits ICA512 proteolysis and insulin secretion. Thus, stimulation of insulin secretion might promote the mobilization of secretory granules by inducing the dissociation of ICA512 from β2-syntrophin–utrophin complexes and the cleavage of the ICA512 cytoplasmic tail by µ-calpain
    corecore