6 research outputs found

    Ambiguities in and completeness of SAS data analysis of membrane proteins: the case of the sensory rhodopsin II–transducer complex

    No full text
    Membrane proteins (MPs) play vital roles in the function of cells and are also major drug targets. Structural information on proteins is vital for understanding their mechanism of function and is critical for the development of drugs. However, obtaining high-resolution structures of membrane proteins, in particular, under native conditions is still a great challenge. In such cases, the low-resolution methods small-angle X-ray and neutron scattering (SAXS and SANS) might provide valuable structural information. However, in some cases small-angle scattering (SAS) provides ambiguous ab initio structural information if complementary measurements are not performed and/or a priori information on the protein is not taken into account. Understanding the nature of the limitations may help to overcome these problems. One of the main problems of SAS data analysis of solubilized membrane proteins is the contribution of the detergent belt surrounding the MP. Here, a comprehensive analysis of how the detergent belt contributes to the SAS data of a membrane-protein complex of sensory rhodopsin II with its cognate transducer from Natronomonas pharaonis (NpSRII-NpHtrII) was performed. The influence of the polydispersity of NpSRII-NpHtrII oligomerization is the second problem that is addressed here. It is shown that inhomogeneity in the scattering length density of the detergent belt surrounding a membrane part of the complex and oligomerization polydispersity significantly impacts on SAXS and SANS profiles, and therefore on 3D ab initio structures. It is described how both problems can be taken into account to improve the quality of SAS data treatment. Since SAS data for MPs are usually obtained from solubilized proteins, and their detergent belt and, to a certain extent, oligomerization polydispersity are sufficiently common phenomena, the approaches proposed in this work might be used in SAS studies of different MPs

    Mechanisms of membrane protein crystallization in ‘bicelles’

    No full text
    Despite remarkable progress, mainly due to the development of LCP and ‘bicelle’ crystallization, lack of structural information remains a bottleneck in membrane protein (MP) research. A major reason is the absence of complete understanding of the mechanism of crystallization. Here we present small-angle scattering studies of the evolution of the “bicelle” crystallization matrix in the course of MP crystal growth. Initially, the matrix corresponds to liquid-like bicelle state. However, after adding the precipitant, the crystallization matrix transforms to jelly-like state. The data suggest that this final phase is composed of interconnected ribbon-like bilayers, where crystals grow. A small amount of multilamellar phase appears, and its volume increases concomitantly with the volume of growing crystals. We suggest that the lamellar phase surrounds the crystals and is critical for crystal growth, which is also common for LCP crystallization. The study discloses mechanisms of “bicelle” MP crystallization and will support rational design of crystallization

    Ferritin self-assembly, structure, function, and biotechnological applications

    No full text
    Ferritin is a vital protein complex responsible for storing iron in almost all living organisms. It plays a crucial role in various metabolic pathways, inflammation processes, stress response, and pathogenesis of cancer and neurodegenerative diseases. In this review we discuss the role of ferritin in diseases, cellular iron regulation, its structural features, and its role in biotechnology. We also show that molecular mechanisms of ferritin self-assembly are key for a number of biotechnological and pharmaceutical applications. The assembly pathways strongly depend on the interface context of ferritin monomers and the stability of its different intermediate oligomers. To date, several schemes of self-assembly kinetics have been proposed. Here, we compare different self-assembly mechanisms and discuss the possibility of self-assembly control by switching between deadlock intermediate states

    Molecular model of a sensor of two-component signaling system

    No full text
    Two-component systems (TCS) are widespread signaling systems present in all domains of life. TCS typically consist of a signal receptor/transducer and a response regulator. The receptors (histidine kinases, chemoreceptors and photoreceptors) are often embedded in the membrane and have a similar modular structure. Chemoreceptors were shown to function in highly ordered arrays, with trimers of dimers being the smallest functional unit. However, much less is known about photoreceptors. Here, we use small-angle scattering (SAS) to show that detergent-solubilized sensory rhodopsin II in complex with its cognate transducer forms dimers at low salt concentration, which associate into trimers of dimers at higher buffer molarities. We then fit an atomistic model of the whole complex into the SAS data. The obtained results suggest that the trimer of dimers is "tripod"-shaped and that the contacts between the dimers occur only through their cytoplasmic regions, whereas the transmembrane regions remain unconnected

    Molecular model of a sensor of two-component signaling system

    No full text
    Two-component systems (TCS) are widespread signaling systems present in all domains of life. TCS typically consist of a signal receptor/transducer and a response regulator. The receptors (histidine kinases, chemoreceptors and photoreceptors) are often embedded in the membrane and have a similar modular structure. Chemoreceptors were shown to function in highly ordered arrays, with trimers of dimers being the smallest functional unit. However, much less is known about photoreceptors. Here, we use small-angle scattering (SAS) to show that detergent-solubilized sensory rhodopsin II in complex with its cognate transducer forms dimers at low salt concentration, which associate into trimers of dimers at higher buffer molarities. We then fit an atomistic model of the whole complex into the SAS data. The obtained results suggest that the trimer of dimers is "tripod"-shaped and that the contacts between the dimers occur only through their cytoplasmic regions, whereas the transmembrane regions remain unconnected

    Influence of cholesterol and beta-sitosterol on the structure of EYPC bilayers

    No full text
    The influence of cholesterol and β-sitosterol on egg yolk phosphatidylcholine (EYPC) bilayers is compared. Different interactions of these sterols with EYPC bilayers were observed using X-ray diffraction. Cholesterol was miscible with EYPC in the studied concentration range (0-50 mol%), but crystallization of β-sitosterol in EYPC bilayers was observed at X ≥ 41 mol% as detected by X-ray diffraction. Moreover, the repeat distance (d) of the lamellar phase was similar upon addition of the two sterols up to mole fraction 17%, while for X ≥ 17 mol% it became higher in the presence of β-sitosterol compared to cholesterol. SANS data on suspensions of unilamellar vesicles showed that both cholesterol and β-sitosterol similarly increase the EYPC bilayer thickness. Cholesterol in amounts above 33 mol% decreased the interlamellar water layer thickness, probably due to "stiffening" of the bilayer. This effect was not manifested by β-sitosterol, in particular due to the lower solubility of β-sitosterol in EYPC bilayers. Applying the formalism of partial molecular areas, it is shown that the condensing effect of both sterols on the EYPC area at the lipid-water interface is small, if any. The parameters of ESR spectra of spin labels localized in different regions of the EYPC bilayer did not reveal any differences between the effects of cholesterol and β-sitosterol in the range of full miscibility
    corecore