53 research outputs found

    Treatment with 5-Fluorouracil and Celecoxib Displays Synergistic Regression of Ultraviolet Light B-Induced Skin Tumors

    Get PDF
    Standard chemotherapeutic agents used for the treatment of pre-cancerous skin lesions and non-melanoma skin cancers are not completely effective. Several studies have suggested that repeated inflammatory sunburn reactions, which include the induction of cyclooxygenase-2 (COX-2) and the subsequent production of prostaglandins, play a role in skin cancer development. COX-2 inhibition has been demonstrated to be a potent means of preventing skin cancer development in mice; however, COX-2 inhibitors alone are not effective as chemotherapeutic agents. Data in a variety of cancer types suggest greater efficacy in treating tumors with combination chemotherapies. Therefore, we hypothesized that a combination of the chemotherapeutic agent 5-fluorouracil (5-FU) and the COX-2 inhibitor and anti-inflammatory drug celecoxib would act synergistically to regress tumors in a murine model of ultraviolet light B- (UVB-) induced carcinogenesis. We found that topical treatment with 5-FU and celecoxib together was up to 70% more effective in reducing the number of UVB-induced skin tumors than 5-FU treatment alone. Our data suggest that more effective chemotherapy regimens can be developed to treat the millions of pre-cancerous and cancerous skin lesions that arise every year, which could ultimately lead to a significant reduction in costs and cosmetic defects (scarring) associated with surgical interventions

    High-Anxious Individuals Show Increased Chronic Stress Burden, Decreased Protective Immunity, and Increased Cancer Progression in a Mouse Model of Squamous Cell Carcinoma

    Get PDF
    In spite of widespread anecdotal and scientific evidence much remains to be understood about the long-suspected connection between psychological factors and susceptibility to cancer. The skin is the most common site of cancer, accounting for nearly half of all cancers in the US, with approximately 2–3 million cases of non-melanoma cancers occurring each year worldwide. We hypothesized that a high-anxious, stress-prone behavioral phenotype would result in a higher chronic stress burden, lower protective-immunity, and increased progression of the immuno-responsive skin cancer, squamous cell carcinoma. SKH1 mice were phenotyped as high- or low-anxious at baseline, and subsequently exposed to ultraviolet-B light (1 minimal erythemal dose (MED), 3 times/week, 10-weeks). The significant strengths of this cancer model are that it uses a normal, immunocompetent, outbred strain, without surgery/injection of exogenous tumor cells/cell lines, and produces lesions that resemble human tumors. Tumors were counted weekly (primary outcome), and tissues collected during early and late phases of tumor development. Chemokine/cytokine gene-expression was quantified by PCR, tumor-infiltrating helper (Th), cytolytic (CTL), and regulatory (Treg) T cells by immunohistochemistry, lymph node T and B cells by flow cytometry, adrenal and plasma corticosterone and tissue vascular-endothelial-growth-factor (VEGF) by ELISA. High-anxious mice showed a higher tumor burden during all phases of tumor development. They also showed: higher corticosterone levels (indicating greater chronic stress burden), increased CCL22 expression and Treg infiltration (increased tumor-recruited immuno-suppression), lower CTACK/CCL27, IL-12, and IFN-γ gene-expression and lower numbers of tumor infiltrating Th and CTLs (suppressed protective immunity), and higher VEGF concentrations (increased tumor angiogenesis/invasion/metastasis). These results suggest that the deleterious effects of high trait anxiety could be: exacerbated by life-stressors, accentuated by the stress of cancer diagnosis/treatment, and mediate increased tumor progression and/or metastasis. Therefore, it may be beneficial to investigate the use of chemotherapy-compatible anxiolytic treatments immediately following cancer diagnosis, and during cancer treatment/survivorship

    Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma

    No full text
    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposure would enhance protective immunity and increase resistance to SCC. Control and short-term stress groups were treated identically except that the short-term stress group was restrained (2.5h) before each of nine UV-exposure sessions (minimum erythemal dose, 3-times/week) during weeks 4-6 of the 10-week UV exposure protocol. Tumors were measured weekly, and tissue collected at weeks 7, 20, and 32. Chemokine and cytokine gene expression was quantified by real-time PCR, and CD4+ and CD8+ T cells by flow cytometry and immunohistochemistry. Compared to controls, the short-term stress group showed greater cutaneous T-cell attracting chemokine (CTACK)/CCL27, RANTES, IL-12, and IFN-gamma gene expression at weeks 7, 20, and 32, higher skin infiltrating T cell numbers (weeks 7 and 20), lower tumor incidence (weeks 11-20) and fewer tumors (weeks 11-26). These results suggest that activation of short-term stress physiology increased chemokine expression and T cell trafficking and/or function during/following UV exposure, and enhanced Type 1 cytokine-driven cell-mediated immunity that is crucial for resistance to SCC. Therefore, the physiological fight-or-flight stress response and its adjuvant-like immuno-enhancing effects, may provide a novel and important mechanism for enhancing immune system mediated tumor-detection/elimination that merits further investigation

    Extended UVB Exposures Alter Tumorigenesis and Treatment Efficacy in a Murine Model of Cutaneous Squamous Cell Carcinoma

    No full text
    Epidemiological studies support a link between cumulative sun exposure and cutaneous squamous cell carcinoma (SCC) development. However, the presumed effects of extended ultraviolet light B (UVB) exposure on tumorigenesis in the sexes have not been formally investigated. We examined differences in ultimate tumorigenesis at 25 weeks in mice exposed to UVB for either 10 or 25 weeks. Additionally, we investigated the effect of continued UVB exposure on the efficacy of topical treatment with antiinflammatory (diclofenac) or antioxidant (C E Ferulic or vitamin E) compounds on modulating tumorigenesis. Vehicle-treated mice in the 25-week UVB exposure model exhibited an increased tumor burden and a higher percentage of malignant tumors compared to mice in the 10-week exposure model, which correlated with increases in total and mutant p53-positive epidermal cells. Only topical diclofenac decreased tumor number and burden in both sexes regardless of UVB exposure length. These data support the commonly assumed but not previously demonstrated fact that increased cumulative UVB exposure increases the risk of UVBinduced SCC development and can also affect therapeutic efficacies. Our study suggests that cessation of UVB exposure by at-risk patients may decrease tumor development and that topical NSAIDs such as diclofenac may be chemopreventive

    Differential effects of topical vitamin E and C E Ferulic® treatments on ultraviolet light B-induced cutaneous tumor development in Skh-1 mice.

    Get PDF
    Because of the ever-increasing incidence of ultraviolet light B (UVB)-induced skin cancer, considerable attention is being paid to prevention through the use of both sunscreens and after sun treatments, many of which contain antioxidants. Vitamin E is included as an antioxidant in many sunscreens and lotions currently on the market. Studies examining the efficacy of vitamin E as a topical preventative agent for UVB-induced skin cancer have yielded conflicting results. A likely contributor to differences in study outcome is the stability of vitamin E in the particular formulation being tested. In the current study we examined the effects of topical vitamin E alone as well as vitamin E combined with vitamin C and ferulic acid in a more stable topical formula (C E Ferulic®). Mice were exposed to UVB for 10 weeks in order to induce skin damage. Then, before the appearance of any cutaneous lesions, mice were treated for 15 weeks with a topical antioxidant, without any further UVB exposure. We found that topical C E Ferulic decreased tumor number and tumor burden and prevented the development of malignant skin tumors in female mice with chronically UVB-damaged skin. In contrast, female mice chronically exposed to UVB and treated topically with vitamin E alone showed a trend towards increased tumor growth rate and exhibited increased levels of overall DNA damage, cutaneous proliferation, and angiogenesis compared to vehicle-treated mice. Thus, we have demonstrated that topical 5% alpha tocopherol may actually promote carcinogenesis when applied on chronically UVB-damaged skin while treating with a more stable antioxidant compound may offer therapeutic benefits

    Depletion of CD4+ Cells Exacerbates the Cutaneous Response to Acute and Chronic UVB Exposure

    Get PDF
    Solid organ transplant recipients have a 60–250-fold increased likelihood of developing sunlight-induced squamous cell carcinoma (SCC) compared with the general population. This increased risk is linked to the immunosuppressive drugs taken by these patients to modulate T cell function, thus preventing organ rejection. To determine the importance of T cells in the development of cutaneous SCC, we examined the effects of selectively depleting Skh-1 mice of systemic CD4+ or CD8+ T cells, using monoclonal antibodies, on ultraviolet B (UVB) radiation-induced inflammation and tumor development. Decreases in systemic CD4+ but not CD8+ T cells significantly increased and prolonged the acute UVB-induced cutaneous inflammatory response, as measured by neutrophil influx, myeloperoxidase activity, and prostaglandin E2 levels. Significantly more p53+ keratinocytes were observed in UVB-exposed CD4-depleted than in CD4-replete mice, and this difference was abrogated in mice depleted of neutrophils before UVB exposure. Increased acute inflammation was associated with significantly increased tumor numbers in CD4-depleted mice chronically exposed to UVB. Furthermore, topical treatment with the anti-inflammatory drug celecoxib significantly decreased tumor numbers in both CD4-replete and CD4-depleted mice. Our findings suggest that CD4+ T cells play an important role in modulating both the acute inflammatory and the chronic carcinogenic response of the skin to UVB
    • …
    corecore