7 research outputs found

    Characterization of Multiblock (Segmented) Copolyurethane- Imides and Nanocomposites Based Thereof Using AFM, Nanotribology, and Nanoindentation Methods

    Get PDF
    This chapter reviews our results on the morphology, tribological, and local mechanical property investigations of new copoly(urethane-imide)s (coPUIs) and nanocomposites based thereof using atomic force microscopy (AFM) and nanoindentation (NI) methods. AFM in the contact mode of lateral forces revealed the presence of different contrast phases on the surface of synthesized films which depends on the chemical structure of monomers used. Single-walled carbon nanotubes (SWCNTs), carbon nanofibers, graphene, tungsten disulfide and tungsten diselenide were introduced into coPUI matrices. Dependencies of microhardness and modulus of elasticity on the depth of indentation have been obtained. It was found that for each synthesized coPUI, there is only one type of carbon nanomaterials that exerts the greatest influence on their characteristics. The improvement of mechanical properties is found to mainly depend on the nature of the polymer matrix and filler. Our results showed that effective methods for improving of tribological characteristics can be either modification by SWCNTs (up to 1 wt.%) or heating at 30°C. Synthesized coPUI films and nanocomposites are very promising materials and can be used as thermoplastic elastomers for tribological applications, and their physical-mechanical properties can be controlled both by temperature and by mechanical action

    Mechanically Stable Magnetic Metallic Materials for Biomedical Applications

    No full text
    The structural, electrical, and magneto-elastic properties of lanthanide base nitride (Ln = Dy-Lu) anti-perovskites were investigated using density functional theory (DFT). The reported structural outcomes are consistent with the experiment and decrease from Dy to Lu due to the decrease ofatomic radii of Ln atoms. According to the electronic band profile, the metallic characteristics of these compounds are due to the crossing over of Ln-f states at the Fermi level and are also supported by electrical resistivity. The resistivity of these compounds at room temperature demonstrates that they are good conductors. Their mechanical stability, anisotropic, load-bearing, and malleable nature are demonstrated by their elastic properties. Due to their metallic and load-bearing nature, in addition to their ductility, these materials are suitable as active biomaterials, especially when significant acting loads are anticipated, such as those experienced by such heavily loaded implants as hip and knee endo-prostheses, plates, screws, nails, dental implants, etc. In thesecases, appropriate bending fatigue strength is required in structural materials for skeletal reconstruction. Magnetic properties show that all compounds are G-type anti-ferromagnetic, with the Neel temperatures ranging from 24 to 48 K, except Lu3Nin, which is non-magnetic. Due to their anti-ferromagnetic structure, magnetic probes cannot read data contained in anti-ferromagnetic moments, therefore, data will be unchanged by disrupted magnetic field. As a result, these compounds can be the best candidates for magnetic cloaking devices

    Impact of the Nanocarbon on Magnetic and Electrodynamic Properties of the Ferrite/Polymer Composites

    No full text
    Binary and ternary composites (CM) based on M-type hexaferrite (HF), polymer matrix (PVDF) and carbon nanomaterials (quasi-one-dimensional carbon nanotubes—CNT and quasi-two-dimensional carbon nanoflakes—CNF) were prepared and investigated for establishing the impact of the different nanosized carbon on magnetic and electrodynamic properties. The ratio between HF and PVDF in HF + PVDF composite was fixed (85 wt% HF and 15 wt% PVDF). The concentration of CNT and CNF in CM was fixed (5 wt% from total HF + PVDF weight). The phase composition and microstructural features were investigated using XRD and SEM, respectively. It was observed that CM contains single-phase HF, γ- and β-PVDF and carbon nanomaterials. Thus, we produced composites that consist of mixed different phases (organic insulator matrix—PDVF; functional magnetic fillers—HF and highly electroconductive additives—CNT/CNF) in the required ratio. VSM data demonstrate that the main contribution in main magnetic characteristics belongs to magnetic fillers (HF). The principal difference in magnetic and electrodynamic properties was shown for CNT- and CNF-based composites. That confirms that the shape of nanosized carbon nanomaterials impact on physical properties of the ternary composited-based magnetic fillers in polymer dielectric matrix

    Impact of Nd<sup>3+</sup> Substitutions on the Structure and Magnetic Properties of Nanostructured SrFe<sub>12</sub>O<sub>19</sub> Hexaferrite

    No full text
    In this study, SrFe12-xNdxO19, where x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, was prepared using high-energy ball milling. The prepared samples were characterized by X-ray diffraction (XRD). Using the XRD results, a comparative analysis of crystallite sizes of the prepared powders was carried out by different methods (models) such as the Scherrer, Williamson–Hall (W–H), Halder–Wagner (H–W), and size-strain plot (SSP) method. All the studied methods prove that the average nanocrystallite size of the prepared samples increases by increasing the Nd concentration. The H–W and SSP methods are more accurate than the Scherer or W–H methods, suggesting that these methods are more suitable for analyzing the XRD spectra obtained in this study. The specific saturation magnetization (σs), the effective anisotropy constant (Keff), the field of magnetocrystalline anisotropy (Ha), and the field of shape anisotropy (Hd) for SrFe12-xNdxO19 (0 ≤ x ≤ 0.5) powders were calculated. The coercivity (Hc) increases (about 9% at x = 0.4) with an increasing degree of substitution of Fe3+ by Nd3+, which is one of the main parameters for manufacturing permanent magnets

    Features of Galvanostatic Electrodeposition of NiFe Films with Composition Gradient: Influence of Substrate Characteristics

    No full text
    NiFe films with a composition gradient are of particular interest from the point of view of fundamental science and practical applications. Such gradient magnetic structures may exhibit unique functional properties useful for sensory applications and beyond. The issue surrounds the anomaly concerning the compositional gradient formed near the substrate in electrolytically deposited binary and ternary iron-containing alloys, which has not previously been clearly explained. In this work, light is shed on this issue, and a clear relationship is found between the structure and surface properties of the substrate, the initially formed NiFe layers and the film composition gradient

    The Interrelation of Synthesis Conditions and Wettability Properties of the Porous Anodic Alumina Membranes

    Get PDF
    The results of studies on the wettability properties and preparation of porous anodic alumina (PAA) membranes with a 3.3 ± 0.2 μm thickness and a variety of pore sizes are presented in this article. The wettability feature results, as well as the fabrication processing characteristics and morphology, are presented. The microstructure effect of these surfaces on wettability properties is analyzed in comparison to outer PAA surfaces. The interfacial contact angle was measured for amorphous PAA membranes as-fabricated and after a modification technique (pore widening), with pore sizes ranging from 20 to 130 nm. Different surface morphologies of such alumina can be obtained by adjusting synthesis conditions, which allows the surface properties to change from hydrophilic (contact angle is approximately 13°) to hydrophobic (contact angle is 100°). This research could propose a new method for designing functional surfaces with tunable wettability. The potential applications of ordinary alumina as multifunctional films are demonstrated

    Preparation, phase stability, and magnetization behavior of high entropy hexaferrites

    No full text
    Summary: The polycrystalline SrFe12O19 samples deeply substituted up to at.67% by Al3+, Ga3+, In3+, Co3+, and Cr3+ cations with a high configurational mixing entropy were prepared by solid-phase synthesis. Phase purity and unit cell parameters were obtained from XRD and analyzed versus the average ionic radius of the iron sublattice. The crystallite size varied around ∼4.5 μm. A comprehensive study of the magnetization was realized in various fields and temperatures. The saturation magnetization was calculated using the Law of Approach to Saturation. The accompanying magnetic parameters were determined. The magnetic crystallographic anisotropy coefficient and the anisotropy field were calculated. All investigated magnetization curves turned out to be nonmonotonic. The magnetic ordering and freezing temperatures were extracted from the ZFC and FC curves. The average size of magnetic clusters varied around ∼350 nm. The high values of the configurational mixing entropy and the phenomenon of magnetic dilution were taken into account
    corecore