3 research outputs found

    Modification of Commercial 3D Fused Deposition Modeling Printer for Extrusion Printing of Hydrogels

    No full text
    In this paper, we report a simple modification of a commercially available printer with fused deposition modeling (FDM) technology for the implementation of extrusion printing of hydrogels. The main difference between an FDM printer and a gel-extrusion printer is their material propulsion system, which has to deal with ether a solid rod or liquid. By application of plastic 3D printing on an FDM printer, specific details, namely, the plunger system and parts of the gel supply system, were produced and combined with a modified printer. Two types of printing of polymer hydrogels were optimized: droplet and filament modes. The rheological ranges suitable for printing for each method were indicated, and the resolution of the samples obtained and the algorithms for creating g-code via Python scripts were given. We have shown the possibility of droplet printing of microspheres with a diameter of 100 microns and a distance between spheres of 200 microns, as well as filament printing of lines with a thickness of 300–2000 microns, which is appropriate accuracy in comparison with commercial printers. This method, in addition to scientific groups, will be especially promising for educational tasks (as a practical work for engineering students or for the introduction of 3D printing into school classes) and industrial groups, as a way to implement 3D extrusion printing of composite polymer hydrogels in a time- and cost-effective way

    Red GaPAs/GaP nanowire-based flexible light-emitting diodes

    No full text
    Funding Information: V.N. thanks the Russian Foundation for Basic Research (RFBR project No. 19-32-60040) for PDMS/MW membrane fabrication and optical measurements. V.F. thanks the Russian Foundation for Basic Research (RFBR project No. 19-32-60037) for the support of the MBE growth. V.N. and F.K. thank the support from the Russian Foundation for Basic Research (grant 20-32-90182) for electrical measurements. V.N., F.K., R.I. and I.M. thank the Russian Scientific Foundation (RSF project No. 20-19-00256) for chemical treatment of PDMS. V.N., V.F., A.M., F.K. and K.S. thank the Ministry of Science and Higher Education of the Russian Federation (FSRM-2020-0005) for the general support. E.M. thanks the Basic Research Program at the National Research University Higher School of Economics (HSE University) in 2021 for optical measurements. N.A.-M. and M.T. thank ITN Marie Curie project INDEED (grant No. 722176) for GaPAs NW/PDMS membrane investigation. This work received financial support from Partenariats Hubert Curien Kolmogorov project No. 43784UJ and Indo French Centre for the Promotion of Advanced Research (CEFIPRA) Project No. 6008-1. A.G.N. acknowledges the Russian Scientific Foundation (RSF project No. 21-72-20050) for synthesis of SWCNTs. Funding Information: Funding: V.N. thanks the Russian Foundation for Basic Research (RFBR project No. 19-32-60040) for PDMS/MW membrane fabrication and optical measurements. V.F. thanks the Russian Foundation for Basic Research (RFBR project No. 19-32-60037) for the support of the MBE growth. V.N. and F.K. thank the support from the Russian Foundation for Basic Research (grant 20-32-90182) for electrical measurements. V.N., F.K., R.I. and I.M. thank the Russian Scientific Foundation (RSF project No. 20-19-00256) for chemical treatment of PDMS. V.N., V.F., A.M., F.K. and K.S. thank the Ministry of Science and Higher Education of the Russian Federation (FSRM-2020-0005) for the general support. E.M. thanks the Basic Research Program at the National Research University HigherSchool of Economics (HSE University) in 2021 for optical measurements. N.A.-M. and M.T. thank ITN Marie Curie project INDEED (grant No. 722176) for GaPAs NW/PDMS membrane investigation. This work received financial support from Partenariats Hubert Curien Kolmogorov project No. 43784UJ and Indo French Centre for the Promotion of Advanced Research (CEFIPRA) Project No. 6008-1. A.G.N. acknowledges the Russian Scientific Foundation (RSF project No. 21-72-20050) for synthesis of SWCNTs. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.We demonstrate flexible red light-emitting diodes based on axial GaPAs/GaP heterostruc-tured nanowires embedded in polydimethylsiloxane membranes with transparent electrodes involv-ing single-walled carbon nanotubes. The GaPAs/GaP axial nanowire arrays were grown by molecular beam epitaxy, encapsulated into a polydimethylsiloxane film, and then released from the growth substrate. The fabricated free-standing membrane of light-emitting diodes with contacts of single-walled carbon nanotube films has the main electroluminescence line at 670 nm. Membrane-based light-emitting diodes (LEDs) were compared with GaPAs/GaP NW array LED devices processed directly on Si growth substrate revealing similar electroluminescence properties. Demonstrated membrane-based red LEDs are opening an avenue for flexible full color inorganic devices.Peer reviewe

    Colloidal Clusters and Networks Formed by Oppositely Charged Nanoparticles with Varying Stiffnesses

    No full text
    Colloidal clusters and gels are ubiquitous in science and technology. Particle softness has a strong effect on interparticle interactions; however, our understanding of the role of this factor in the formation of colloidal clusters and gels is only beginning to evolve. Here, we report the results of experimental and simulation studies of the impact of particle softness on the assembly of clusters and networks from mixtures of oppositely charged polymer nanoparticles (NPs). Experiments were performed below or above the polymer glass transition temperature, at which the interaction potential and adhesive forces between the NPs were significantly varied. Hard NPs assembled in fractal clusters that subsequently organized in a kinetically arrested colloidal gel, while soft NPs formed dense precipitating aggregates, due to the NP deformation and the decreased interparticle distance. Importantly, interactions of hard and soft NPs led to the formation of discrete precipitating NP aggregates at a relatively low volume fraction of soft NPs. A phenomenological model was developed for interactions of oppositely charged NPs with varying softnesses. The experimental results were in agreement with molecular dynamics simulations based on the model. This work provides insight on interparticle interactions before, during, and after the formation of hard–hard, hard–soft, and soft–soft contacts and has impact for numerous applications of reversible colloidal gels, including their use as inks for additive manufacturing
    corecore