37 research outputs found

    In vivo compartmental analysis of leukocytes in mouse lungs

    Get PDF
    The lung has a unique structure consisting of three functionally different compartments (alveolar, interstitial, and vascular) situated in an extreme proximity. Current methods to localize lung leukocytes using bronchoalveolar lavage and/or lung perfusion have significant limitations for determination of location and phenotype of leukocytes. Here we present a novel method using in vivo antibody labeling to enable accurate compartmental localization/quantification and phenotyping of mouse lung leukocytes. Anesthetized C57BL/6 mice received combined in vivo intravenous and intratracheal labeling with fluorophore-conjugated anti-CD45 antibodies, and lung single-cell suspensions were analyzed by flow cytometry. The combined in vivo intravenous and intratracheal CD45 labeling enabled robust separation of the alveolar, interstitial, and vascular compartments of the lung. In naive mice, the alveolar compartment consisted predominantly of resident alveolar macrophages. The interstitial compartment, gated by events negative for both intratracheal and intravenous CD45 staining, showed two conventional dendritic cell populations, as well as a Ly6C(lo) monocyte population. Expression levels of MHCII on these interstitial monocytes were much higher than on the vascular Ly6C(lo) monocyte populations. In mice exposed to acid aspiration-induced lung injury, this protocol also clearly distinguished the three lung compartments showing the dynamic trafficking of neutrophils and exudative monocytes across the lung compartments during inflammation and resolution. This simple in vivo dual-labeling technique substantially increases the accuracy and depth of lung flow cytometric analysis, facilitates a more comprehensive examination of lung leukocyte pools, and enables the investigation of previously poorly defined “interstitial” leukocyte populations during models of inflammatory lung diseases

    Sepsis biomarkers and diagnostic tools with a focus on machine learning.

    Get PDF
    Over the last years, there have been advances in the use of data-driven techniques to improve the definition, early recognition, subtypes characterisation, prognostication and treatment personalisation of sepsis. Some of those involve the discovery or evaluation of biomarkers or digital signatures of sepsis or sepsis sub-phenotypes. It is hoped that their identification may improve timeliness and accuracy of diagnosis, suggest physiological pathways and therapeutic targets, inform targeted recruitment into clinical trials, and optimise clinical management. Given the complexities of the sepsis response, panels of biomarkers or models combining biomarkers and clinical data are necessary, as well as specific data analysis methods, which broadly fall under the scope of machine learning. This narrative review gives a brief overview of the main machine learning techniques (mainly in the realms of supervised and unsupervised methods) and published applications that have been used to create sepsis diagnostic tools and identify biomarkers

    AXL Expression on Homeostatic Resident Liver Macrophages Is Reduced in Cirrhosis Following GAS6 Production by Hepatic Stellate Cells.

    Get PDF
    BACKGROUND & AIMS: AXL and MERTK expression on circulating monocytes modulated immune responses in patients with cirrhosis (CD14+HLA-DR+AXL+) and acute-on-chronic liver failure (CD14+MERTK+). AXL expression involved enhanced efferocytosis, sustained phagocytosis, but reduced tumor necrosis factor-α/interleukin-6 production and T-cell activation, suggesting a homeostatic function. Axl was expressed on murine airway in tissues contacting the external environment, but not interstitial lung- and tissue-resident synovial lining macrophages. We assessed AXL expression on tissue macrophages in patients with cirrhosis. METHODS: Using multiplexed immunofluorescence we compared AXL expression in liver biopsies in cirrhosis (n = 22), chronic liver disease (n = 8), non-cirrhotic portal hypertension (n = 4), and healthy controls (n = 4). Phenotype and function of isolated primary human liver macrophages were characterized by flow cytometry (cirrhosis, n = 11; control, n = 14) ex vivo. Also, AXL expression was assessed on peritoneal (n = 29) and gut macrophages (n = 16) from cirrhotic patients. Regulation of AXL expression was analyzed in vitro and ex vivo using primary hepatic stellate cells (HSCs), LX-2 cells, and GAS6 in co-culture experiments. RESULTS: AXL was expressed on resident (CD68+) but not tissue-infiltrating (MAC387+) liver macrophages, hepatocytes, HSCs, or sinusoidal endothelial cells. Prevalence of hepatic CD68+AXL+ cells significantly decreased with cirrhosis progression: (healthy, 90.2%; Child-Pugh A, 76.1%; Child-Pugh B, 64.5%; and Child-Pugh C, 18.7%; all P < .05) and negatively correlated with Model for End-Stage Liver Disease and C-reactive protein (all P < .05). AXL-expressing hepatic macrophages were CD68highHLA-DRhighCD16highCD206high. AXL expression also decreased on gut and peritoneal macrophages from cirrhotic patients but increased in regional lymph nodes. GAS6, enriched in the cirrhotic liver, appeared to be secreted by HSCs and down-regulate AXL in vitro. CONCLUSIONS: Decreased AXL expression on resident liver macrophages in advanced cirrhosis, potentially in response to activated HSCs-secreted GAS6, suggests a role for AXL in the regulation of hepatic immune homeostasis

    Ebola Zaire Virus Blocks Type I Interferon Production by Exploiting the Host SUMO Modification Machinery

    Get PDF
    Ebola Zaire virus is highly pathogenic for humans, with case fatality rates approaching 90% in large outbreaks in Africa. The virus replicates in macrophages and dendritic cells (DCs), suppressing production of type I interferons (IFNs) while inducing the release of large quantities of proinflammatory cytokines. Although the viral VP35 protein has been shown to inhibit IFN responses, the mechanism by which it blocks IFN production has not been fully elucidated. We expressed VP35 from a mouse-adapted variant of Ebola Zaire virus in murine DCs by retroviral gene transfer, and tested for IFN transcription upon Newcastle Disease virus (NDV) infection and toll-like receptor signaling. We found that VP35 inhibited IFN transcription in DCs following these stimuli by disabling the activity of IRF7, a transcription factor required for IFN transcription. By yeast two-hybrid screens and coimmunoprecipitation assays, we found that VP35 interacted with IRF7, Ubc9 and PIAS1. The latter two are the host SUMO E2 enzyme and E3 ligase, respectively. VP35, while not itself a SUMO ligase, increased PIAS1-mediated SUMOylation of IRF7, and repressed Ifn transcription. In contrast, VP35 did not interfere with the activation of NF-ÎșB, which is required for induction of many proinflammatory cytokines. Our findings indicate that Ebola Zaire virus exploits the cellular SUMOylation machinery for its advantage and help to explain how the virus overcomes host innate defenses, causing rapidly overwhelming infection to produce a syndrome resembling fulminant septic shock

    Adaptive immunity and neutralizing antibodies against SARS-CoV-2 variants of concern following vaccination in patients with cancer: the CAPTURE study

    Get PDF
    Coronavirus disease 2019 (COVID-19) antiviral response in a pan-tumor immune monitoring (CAPTURE) (NCT03226886) is a prospective cohort study of COVID-19 immunity in patients with cancer. Here we evaluated 585 patients following administration of two doses of BNT162b2 or AZD1222 vaccines, administered 12 weeks apart. Seroconversion rates after two doses were 85% and 59% in patients with solid and hematological malignancies, respectively. A lower proportion of patients had detectable titers of neutralizing antibodies (NAbT) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) versus wild-type (WT) SARS-CoV-2. Patients with hematological malignancies were more likely to have undetectable NAbT and had lower median NAbT than those with solid cancers against both SARS-CoV-2 WT and VOC. By comparison with individuals without cancer, patients with hematological, but not solid, malignancies had reduced neutralizing antibody (NAb) responses. Seroconversion showed poor concordance with NAbT against VOC. Previous SARS-CoV-2 infection boosted the NAb response including against VOC, and anti-CD20 treatment was associated with undetectable NAbT. Vaccine-induced T cell responses were detected in 80% of patients and were comparable between vaccines or cancer types. Our results have implications for the management of patients with cancer during the ongoing COVID-19 pandemic

    Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study

    Get PDF
    Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer

    Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study

    Get PDF
    Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer

    Adaptive immunity and neutralizing antibodies against SARS-CoV-2 variants of concern following vaccination in patients with cancer: the CAPTURE study

    Get PDF
    Coronavirus disease 2019 (COVID-19) antiviral response in a pan-tumor immune monitoring (CAPTURE) (NCT03226886) is a prospective cohort study of COVID-19 immunity in patients with cancer. Here we evaluated 585 patients following administration of two doses of BNT162b2 or AZD1222 vaccines, administered 12 weeks apart. Seroconversion rates after two doses were 85% and 59% in patients with solid and hematological malignancies, respectively. A lower proportion of patients had detectable titers of neutralizing antibodies (NAbT) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) versus wild-type (WT) SARS-CoV-2. Patients with hematological malignancies were more likely to have undetectable NAbT and had lower median NAbT than those with solid cancers against both SARS-CoV-2 WT and VOC. By comparison with individuals without cancer, patients with hematological, but not solid, malignancies had reduced neutralizing antibody (NAb) responses. Seroconversion showed poor concordance with NAbT against VOC. Previous SARS-CoV-2 infection boosted the NAb response including against VOC, and anti-CD20 treatment was associated with undetectable NAbT. Vaccine-induced T cell responses were detected in 80% of patients and were comparable between vaccines or cancer types. Our results have implications for the management of patients with cancer during the ongoing COVID-19 pandemic

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Volutrauma, but not Atelectrauma, Induces Systemic Cytokine Production by Lung-Marginated Monocytes

    No full text
    Objectives: Ventilator-induced lung injury has substantive impact on mortality of patients with acute respiratory distress syndrome. Although low tidal volume ventilation has been shown to reduce mortality, clinical benefits of open-lung strategy are controversial. In this study, we investigated the impact of two distinct forms of ventilator-induced lung injury, i.e., volutrauma and atelectrauma, on the progression of lung injury and inflammation, in particular alveolar and systemic cytokine production. Design: Ex vivo study. Setting: University research laboratory. Subjects: C57BL/6 mice. Interventions: Isolated, buffer-perfused lungs were allocated to one of three ventilatory protocols for 3 hours: control group received low tidal volume (7 mL/kg) with positive end-expiratory pressure (5 cm H2O) and regular sustained inflation; high-stretch group received high tidal volume (30–32 mL/kg) with positive end-expiratory pressure (3 cm H2O) and sustained inflation; and atelectasis group received the same tidal volume as control but neither positive end-expiratory pressure nor sustained inflation. Measurements and Main Results: Both injurious ventilatory protocols developed comparable levels of physiological injury and pulmonary edema, measured by respiratory system mechanics and lavage fluid protein. High-stretch induced marked increases in proinflammatory cytokines in perfusate and lung lavage fluid, compared to control. In contrast, atelectasis had no effect on perfusate cytokines compared to control but did induce some up-regulation of lavage cytokines. Depletion of monocytes marginated within the lung microvasculature, achieved by pretreating mice with IV liposome-encapsulated clodronate, significantly attenuated perfusate cytokine levels, especially tumor necrosis factor, in the high-stretch, but not atelectasis group. Conclusions: Volutrauma (high-stretch), but not atelectrauma (atelectasis), directly activates monocytes within the pulmonary vasculature, leading to cytokine release into systemic circulation. We postulate this as a potential explanation why open-lung strategy has limited mortality benefits in ventilated critically ill patients
    corecore