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Summary
Over the last years, there have been advances in the use of data-driven techniques to improve the definition, early
recognition, subtypes characterisation, prognostication and treatment personalisation of sepsis. Some of those
involve the discovery or evaluation of biomarkers or digital signatures of sepsis or sepsis sub-phenotypes. It is hoped
that their identification may improve timeliness and accuracy of diagnosis, suggest physiological pathways and
therapeutic targets, inform targeted recruitment into clinical trials, and optimise clinical management. Given the
complexities of the sepsis response, panels of biomarkers or models combining biomarkers and clinical data are
necessary, as well as specific data analysis methods, which broadly fall under the scope of machine learning. This
narrative review gives a brief overview of the main machine learning techniques (mainly in the realms of supervised
and unsupervised methods) and published applications that have been used to create sepsis diagnostic tools and
identify biomarkers.

Copyright © 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Sepsis is an abnormal systemic reaction to an infection,
representing a pattern of response by the immune sys-
tem to infectious agents. Often, a hyper-inflammatory
response is followed by an immunosuppressive phase
during which secondary infections and multiple organ
dysfunction can occur.1,2

Sepsis, as currently defined, includes a wide variety
of heterogeneous non-specific clinical pictures. As Liu
puts it: “sepsis is not a monolithic disease, but a loose
collection of symptoms with diverse outcomes”.3 It has
long been clear that the “definitions of sepsis may be too
broad and common to heterogeneous groups of patients
who do not necessarily have the same disorder”.4 The
consequence of the challenge of characterising sepsis
is that it complicates its early identification and the
successful application of personalised interventions
(such as steroids, immunotherapy or haemodynamic
optimisation).5

Over the last decades, there have been a number of
advances in the use of data-driven techniques to
improve on the definition, early recognition, subtypes
characterisation, and personalisation of management.
*Corresponding author.
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Some of those broadly involve the discovery or assess-
ment of biomarkers or digital signatures of sepsis or
sepsis phenotypes. It is hoped that the identification of
sepsis biomarkers and/or subclasses may improve
timeliness and accuracy of diagnosis, suggest physio-
logical pathways and therapeutic targets, inform tar-
geted recruitment into clinical trials, and optimise
clinical management.5

Here, we use the term biomarker loosely, including
any molecule (inclusive of routinely measured lab tests)
measured in the blood that have the potential to help
with the above mentioned objectives. Given the com-
plexities of the sepsis response, panels of biomarkers or
models combining biomarkers and clinical data are
necessary.2,5 Therefore, we also analysed the literature
combining biomarkers with other patient data including
demographics, vital signs, etc. Due to the complexity,
high dimensionality and/or large size of the datasets
involved, specific data analysis tools –loosely termed
machine learning– become required. A wide range of
sepsis biomarkers has been described, including fluid
phase pattern recognition molecules (PRMs), cytokines,
chemokines, damage-associated molecular patterns
(DAMPs), non-coding RNAs, microRNAs, cell mem-
brane receptors, cell proteins, metabolites, soluble re-
ceptors and complement system components.2,6 These
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biomarkers can be classified in their various “omics”
categories: (epi)genomics (the study of the genome and
its supporting structures), transcriptomics (RNA), pro-
teomics (proteins including cytokines), and metab-
olomics (metabolites).7 Among those, we excluded most
of the research that did not involve a machine learning
component, since it has been exhaustively reviewed
recently elsewhere.2,6,7

Machine learning is a class of mathematical methods
that attempt to generate knowledge and insight from
large datasets. We have included a section introducing
the most common machine learning methods in this
review. In a nutshell, supervised learning enabled the
development of sepsis prediction algorithms, whilst
unsupervised learning has been applied to highlight
the underlying structure or to unearth hidden patterns
in high-dimensional datasets, which is particularly
appealing given the above-mentioned issues around
sepsis characterisation. The vast majority of applications
on sepsis diagnosis and prognostication rely on super-
vised learning, whilst unsupervised learning is used to
define phenotypes (and their downstream applications
in decision support).

Due to the vastness of the existing literature and the
heterogeneity of the topics included in this review, we
chose to conduct a narrative review, which are suitable
in situations when there are disparate interventions or
when there is dissimilarity of outcome measures and
follow-up times in the analysed material.8 This narrative
review will give a brief overview of the main machine
learning techniques that have been used to create sepsis
diagnostic tools and identify biomarkers, and survey the
literature on these applications. We structured the re-
view based on the purpose of the models (diagnosis,
prognosis, or phenotyping) and the nature of the input
data: routine (e.g. clinical data and laboratory tests) or
non-routine data (gene expression, metabolomics, cyto-
kines, etc.).
Overview of relevant machine learning
techniques
A variety of machine learning algorithms have been
applied to the question of sepsis diagnosis, prognosti-
cation and phenotyping, most of which belong to the
realms of supervised or unsupervised learning (Fig. 1).

Classically, supervised learning is interested in
learning the mathematical function linking some input
data (e.g. patient characteristics and severity at the time of
hospital admission) and a label (presence of sepsis). As
such, supervised learning is applied to prediction tasks,
where a model is built on training data and applied
prospectively to new -previously unseen-data points.
There is a wide range of techniques available to re-
searchers, the most common being logistic regression,
decision trees (and their combination: random forests),
neural networks (and their “deep” version in deep
learning), gradient boosting, among many others.
Because they have been used in metabolomics analyses,
we also mention Partial Least Squares (PLS), a class of
algorithms used to build interpretable predictive models.

Another field of machine learning is represented by
unsupervised learning, where the purpose of the algo-
rithm is to establish the underlying structure or hidden
patterns in a high-dimensional dataset. Sepsis being a
heterogeneous syndrome, the identification of homo-
geneous phenotypes may allow more targeted therapy,
and/or to inform the inclusion of patients into clinical
trials.9,10 Here again, a large variety of methods is
available to researchers, each with their own advantages
and limitations. We’ll present here only the most pop-
ular algorithms.

Principal component analysis (PCA) is a technique
for reducing the dimensionality of large datasets,
increasing interpretability (for example allowing their
visualisation in 2D or 3D) while at the same time
minimising information loss. It does so by creating
new, less correlated variables that maximise variance.11

t-distributed Stochastic Neighbour Embedding (t-SNE)
is another dimensionality reduction technique that can
deal with linearly non separable data, mainly used for
visualisation of data in 2D and 3D. K-means clustering
is one of the simplest and popular unsupervised ma-
chine learning algorithms. In k-means, the number of
cluster centroids k needs to be pre-defined. Then, the
algorithm identifies the location of these centroids and
allocates all data points so as to minimise the distance
within the clusters. Hierarchical cluster analysis (HCA)
is a strategy that seeks to build a hierarchy of clusters
that has an established ordering from bottom to top. In
HCA, it is not necessary to pre-set the number of clus-
ters. Instead, researchers choose this number of clus-
ters, using a variety of tools such as elbow plots or the
dendrogram. Finally, latent class analysis (LCA) and
latent profile analysis (LPA) are techniques that aim to
recover hidden groups from observed data. They are
similar to clustering techniques but more flexible
because they are based on an explicit model of the data,
and account for uncertainty in the group definition. LCA
and LPA are useful when you want to reduce a large
number of continuous (LPA) or categorical (LCA) vari-
ables to a few subgroups. There are longitudinal ver-
sions of both LPA and LCA, which can be used to group
time series of patient data, i.e. “trajectories”.12
Sepsis biomarkers and diagnostic tools
Our main results are summarised in Table 1.

Sepsis diagnosis and prediction using machine
learning
Routine clinical data and laboratory tests
The literature is replete with examples of sepsis pre-
diction models, that use routine clinical data to attempt
www.thelancet.com Vol ▪ ▪, 2022
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Fig. 1: Objectives and principles of supervised and unsupervised learning. Supervised learning methods link input data and labels, and are
typically used in sepsis prediction algorithms. Unsupervised learning has been applied to highlight the underlying structure or to unearth hidden
patterns in high-dimensional datasets. HTE: Heterogeneity of Treatment Effect.
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to identify patients at high risk of sepsis and septic
shock. For example, Mao and colleagues derived InSight,
a sepsis/septic shock prediction tool, in a multicentre
cohort of 684,000+ patients, that relied only on 6 vital
signs.13 For the detection of sepsis and severe sepsis
(sepsis with organ dysfunction), their algorithm ach-
ieved an area under the receiver operating characteristic
(AUROC) of 0.92 (95% CI 0.90–0.93) and 0.87 (95% CI
0.86–0.88), respectively. Four hours before onset, it
predicted septic shock with an AUROC of 0.96 (95% CI
0.94–0.98) and severe sepsis with an AUROC of 0.85
(95% CI 0.79–0.91).

A 2020 meta-analysis by Fleuren and colleagues
identified 28 papers reporting on 130 various models.37

For the prediction of sepsis, diagnostic test accuracy
assessed by the AUROC ranged from 0.68 to 0.99
in the ICU, to 0.96–0.98 in-hospital and 0.87 to 0.97 in
the ED.
www.thelancet.com Vol ▪ ▪, 2022
In an evolution of these supervised learning methods,
COMPOSER (COnformal Multidimensional Prediction
Of SEpsis Risk) was proposed.38 It is a deep learning
model for the early prediction of sepsis, specifically
designed to reduce false alarms by detecting unfamiliar
patients/situations arising from erroneous data, miss-
ingness, distributional shift and data drifts. Using 40
clinical variables (6 static demographic and 34 dynamic
vital signs and lab values), COMPOSER achieved high
AUROCs ranging from 0.92 to 0.95 in the ICU and
0.94–0.95 in the ED.

Sporadically, some of these models have been
deployed in the clinical environment and tested for their
effect on sepsis recognition and patient outcomes.
Recently, a large prospective multicentre study monitored
over 590,000 in-hospital patients and flagged 6877 pa-
tients with sepsis who were identified by an alert before
initiation of antibiotics.39 The underlying algorithm used
3
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Task →
Input Data ↓

Sepsis diagnosis
and/or prediction

Sepsis phenotypes
(characterisation of
subgroups)

Sepsis prognosis Treatment decision support

Routine clinical
data & lab tests

Sepsis/septic shock
prediction tool13

Seymour’s α, β, γ,
and δ10

Sepsis mortality
prediction14

Haemodynamic phenotypes15;
Coagulation phenotypes and
thrombomodulin16

Gene expression -
transcriptomics

IMX-BVN-117 SRS 1-218,19;
Mars 1-420;
Inflammopathic, Adaptive,
and Coagulopathic
phenotypes21

IMX-SEV-222 Interaction SRS-steroids23

Inflammatory
biomarkers

Presepsin, procalcitonine,
pro-adrenomedullin,
adrenomedullin24

ARDS hypo/hyper
inflammatory
phenotypes25–28

TNFα levels correlate
with mortality29

Interaction ARDS phenotypes
with PEEP,25 fluid strategy,27

simvastatin26;
IFNγ/IL10 ratio and steroids.30

Metabolomics Metabolomic profile
of sepsis31–33

Clustering of plasma
metabolic profiles34

Prediction of sepsis
mortality
from blood
metabolites35,36

We classified sepsis biomarkers and digital signatures based on the input data and the objective of the task (sepsis diagnosis, prediction, prognostication, phenotyping or
treatment decision support). SRS: Sepsis Response Signature; IMX-BVN-1: Inflammatix Bacterial Viral Non-Infected version 1; IMX-SEV-2: Inflammatix Severity version 2;
TNFα: Tumour necrosis factor α.

Table 1: Summary of main findings, with examples of applications.
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Cox proportional hazard models and a wide range of
patient data including vital signs, laboratory data, clini-
cian notes, procedures and medication history to
generate a sepsis risk score in real time. In the study,
patients whose alert was confirmed by a provider within
3 h of the alert had a reduced in-hospital mortality rate
(3.3% of adjusted absolute reduction, confidence interval
(CI) 1.7–5.1%, and 18.7% of adjusted relative reduction,
CI 9.4–27.0%), organ failure and length of stay.

With regards to sepsis prognostication, many publi-
cations performed mortality prediction tasks focusing
on cohorts of patients with sepsis. For example, van
Doorn and colleagues used gradient boosting to predict
31-day mortality in patients with sepsis in the emer-
gency department, using a combination of clinical and
laboratory data.14 Their model achieved an AUROC of
0.84 (95% CI: 0.81–0.87), surpassing human clinicians
(AUROC 0.73) and risk scores (SOFA AUROC 0.75).

Non routine biomarkers: transcriptomics, proteomics and
metabolomics
A large number of studies have attempted to identify
sepsis signatures in omics data collected in the host, but
very few were validated prospectively. For example,
transcriptomic data (29 mRNAs) of 1,069 patients from
18 retrospective studies was used to build neural
network classifiers for bacterial and viral infections.17

When tested prospectively in an independent cohort of
patients within 36 h of hospital admission, the model
achieved an AUROC of 0.92 for bacterial (versus others)
infections and 0.91 for viral (vs others) infections.
Sampson and colleagues prospectively tested two pro-
prietary blood transcriptomic signatures of bacterial
and viral infection.40 Here again they conducted a
prospective validation study in a cohort of 332 patients
with fever in the emergency department, and measured
an AUROC of 0.95 (95% CI 0.9–1) using a score
combining both transcriptomic signatures.

Risk stratification and mortality prediction in sepsis
can be enriched using transcriptomic data. For example,
Sweeney and colleagues created four prediction models
using data from 21 different sepsis cohorts (both
community-acquired and hospital-acquired, N = 1113
patients), which achieved AUROCs around 0.85.41 Other
work has confirmed the ability of transcriptomic ap-
proaches to enhance sepsis mortality prediction in the
emergency department22 and in surgical populations.42

A large number of inflammatory biomarkers
(C-reactive protein, presepsin, procalcitonine, proa-
drenomedullin, adrenomedullin, kallistatin, etc.) have
been studied and were found to be associated with the
presence of sepsis, with sepsis severity and sepsis out-
comes.24,43,44 For example, a meta-analysis of 19 studies
including a total of 3012 patients revealed AUROCs of
0.84 for procalcitonin and 0.87 for presepsin for the
diagnosis of sepsis.24

Metabolomics is an omics science that uses tech-
niques such as nuclear magnetic resonance (NMR),
spectroscopy or mass spectrometry to measure a wide
range of metabolites in biofluid samples. This approach
has been used in many sepsis studies, utilising a range
of supervised learning techniques such as partial least
squares discriminant analysis (PLS-DA) and orthogonal
projections to latent structures discriminant analysis
(OPLS-DA).45 In brief such techniques have provided
insight into the metabolic disturbance of sepsis and
have demonstrated that similar metabolic pathways are
disrupted when patients with sepsis are compared to
www.thelancet.com Vol ▪ ▪, 2022

www.thelancet.com/digital-health


Review
non-septic inflammation as when sepsis survivors are
compared with those who die. Sepsis is metabolically
characterised by mitochondrial dysfunction and upre-
gulation of glycolysis and the TCA cycle whilst increased
energy demand and oxidative stress lead to changes in
protein and amino acid metabolism. Many of these
studies have been designed to look for metabolites that
discriminate disease entities, such as differentiating
sepsis from SIRS31–33 or healthy controls46,47 or sepsis
survivors from non-survivors.35,36,45 For example, Kosya-
kovsky and colleagues measured the levels of 411
plasma metabolites in 60 patients with sepsis and
highlighted 13 molecules that were strongly associated
with 28-day mortality, through an ensemble machine
learning importance score.36

Detrimental sepsis effects have been attributed to a
“cytokine storm.” However, a recent meta-analysis
found no association between TNFα levels and sepsis
source, sepsis severity, or sequential organ failure
assessment score, even though TNFα levels were higher
in non-survivors.29 Plasma metabolites (especially those
in the death-related metabolic pathways - DRMPs) differ
between sepsis survivors and non-survivors. In a meta-
analysis of 21 sepsis cohorts and 2509 metabolites,
prediction of death using DRMPs yielded a pooled
AUROC of 0.81 (95% CI 0.76–0.87).48 In a prospective
validation study, the DRMPs metabolites achieved an
AUROC of 0.88.

Finally, we briefly mention a potential novel tech-
nique that relies on the measurement of the biophysical
properties of white blood cells as they are stretched
through a microfluidic channel, which accurately iden-
tified subjects with severe illness as measured by SOFA,
APACHE-II, hospital-free days, and ICU admission.49
Sepsis phenotypes
Routine clinical data and laboratory tests
Applying LPA to clinical and laboratory data, Zhang and
colleagues defined four sepsis phenotypes.12 Profile 1
(the largest) was characterised by the lowest severity and
mortality rate; profile 2 was characterised by respiratory
dysfunction; profile 3 included multiple organ dysfunc-
tion, and profile 4 was characterised by neurological
dysfunction. Subsequently, Shald and colleagues exam-
ined the progression of these four phenotypes in a
different cohort.50 As in the seminal work, they confirmed
differences in mortality, length-of-stay, ventilator-free
days and fluid balance status across the groups.

Seymour et al. conducted a retrospective analysis
using routine data from 63,858 patients in three obser-
vational cohorts, and applied consensus k-means clus-
tering to characterise four novel sepsis phenotypes (α, β,
γ, and δ) with different demographics, laboratory values,
and patterns of organ dysfunction.10 The α phenotype
included patients with the lowest severity. Patients in
the β phenotype had more comorbidities and renal
www.thelancet.com Vol ▪ ▪, 2022
dysfunction. Inflammation and pulmonary dysfunction
was marked in the γ cluster, while the δ phenotype had
more septic shock, liver dysfunction and the highest
average SOFA score and mortality rate (32%). The re-
searchers demonstrated that the clusters correlated with
biomarkers and mortality. Then, they conducted simu-
lations using data from three randomised clinical trials
involving 4737 patients, and demonstrated how the
outcomes related to the treatments were sensitive to
changes in the distribution of these phenotypes.

Apart from hypothesis generation, the approach of
phenotyping entities may find a practical application in
sepsis, and in intensive care in general. A potential
important contributor to many negative RCTs is our
inability to identify subgroups of patients that could
benefit from (or be harmed by) a given treatment.9,51 The
heterogeneity of patients included in such large trials
contributes to ‘negative’ results. Among all patients who
meet the rather nonspecific definition of sepsis (or
ARDS, delirium, etc.), it is likely that a wide breadth of
responses to a given intervention will be seen in
different subgroups, ranging from clear benefit to clear
harm. Unsupervised learning could help inform future
trials by highlighting which subgroups of patients are
more likely to respond to a given intervention. For
example, clustering has enabled the characterisation of
coagulation phenotypes, and demonstrated the associa-
tion between cluster assignment and response to re-
combinant human thrombomodulin.16 Another study
identified various haemodynamic profiles of patients with
sepsis (e.g. hypovolaemic, hypervolaemic, left ventricular
failure, etc.), all of which require a different manage-
ment.15 However, this approach has not been successfully
applied yet in a prospective randomised trial.

Finally, longitudinal clustering has allowed the iden-
tification of various patient “trajectories”, describing their
progression from disease state to disease state, across the
spectrum of severity and organ dysfunctions. For
example, Liu has generated four clusters using spectral
clustering on time series of patient data, labelled them
according to septic shock prevalence within clusters, and
successfully linked them to outcomes.3

Non-routine biomarkers
Gene-expression. Machine learning techniques have
been applied to gene expression data in an attempt to
identify subgroups of patients with sepsis who have
different clinical outcomes and may respond differently
to sepsis therapies, based on differing pathophysiolog-
ical mechanisms driven by different patterns of gene
expression. Agglomerative hierarchical cluster analysis
with k-means clustering has been used to derive two
“sepsis response signatures” (SRS) from leucocyte
transcriptomics data in patients with either community
acquired pneumonia or faecal peritonitis.18,19 Differen-
tial gene expression between these two sub-phenotypes
suggests that patients with the SRS1 phenotype have
5
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gene expression features consistent with relative
immunosuppression compared to those with the SRS2
sub-phenotype, characterised by endotoxin tolerance
and T-cell exhaustion. The SRS1 subgroup is associated
with more organ dysfunction, vasopressor requirement
and a higher mortality rate.18,19 Not only do the identi-
fication of such sub-phenotypes provide novel patho-
logical insights that could lead to better understanding
of sepsis, they provide a means by which we could start
to identify groups of patients who may derive the most
benefit or may come to harm from sepsis therapies. In a
secondary analysis of a randomised trial of corticoste-
roids in septic shock, a significant interaction between
SRS groups and response to steroids was found, with
those patients with the SRS2 (relatively immunocom-
petent) sub-phenotypes having increased mortality if
given hydrocortisone compared to placebo.23

Sweeney and colleagues pooled data from 14 bacte-
rial sepsis transcriptomic datasets totalling 700 patients
and used clustering to identify three phenotypes, which
they call Inflammopathic (innate immunity activation),
Adaptive (adaptive immune activation), and Coagulo-
pathic (with coagulopathy).21 They were able to externally
confirm the robustness of these phenotypes in 9 other
datasets (n = 600).

In another study, consensus clustering based on it-
erations of agglomerative hierarchical clustering of
genome wide leukocyte gene expression data derived
four sub-phenotypes named Mars1-4.20 Mars1 was
associated with a decrease in expression of genes cor-
responding to key innate and adaptive immune cell
functions such as toll-like receptor, NF-kB1 signalling,
antigen presentation, and T-cell receptor signalling and
an increase in expression of metabolic pathway genes
including haem biosynthesis pathways. This sub-
phenotype had high SOFA scores and incidence of
shock and had the highest mortality of all of the sub-
phenotypes. Alternatively, the relatively low risk Mars3
sub-phenotype had increased expression of adaptive
immune and T-cell function and showed a significant
association with the SRS2, low risk, sub-phenotype
described previously. Interestingly, when applied to an
exploratory data set derived from children under 10
years of age with sepsis, although Mars1, 2 and 4 groups
could be detected Mars3 was absent, perhaps high-
lighting the underdeveloped adaptive immune system
in children.52

An alternative approach using partitioning around
medoids (PAM) clustering based on Euclidean distance
on gene-expression data from neutrophils of patients
with sepsis53 also identified two subgroups with one
associated with higher rates of severe sepsis and
increased expression of genes associated with inflam-
mation and Toll receptor signalling pathways.

In paediatric sepsis, unsupervised hierarchical clus-
tering of 6934 genes revealed three sub-phenotypes
named A, B and C.54 An analysis of the 100 most
predictive genes revealed that sub-phenotype A was
characterised by repression of genes corresponding to
key signalling pathways of the adaptive immune system.
This sub-phenotype was also associated with the worst
disease severity, highest rates of organ failure and mor-
tality. Subsequently, gene expression mosaics were
developed based on these 100 genes using self-
organising maps for every sample,55 an approach that
demonstrated high accuracy in a sub-phenotype classifi-
cation task. Mosaics could also be analysed by computer
based image analysis platforms which allowed the three
subgroups to be validated in a second data set.56 As in
adults, an association between corticosteroids and mor-
tality was identified in children, with sub-phenotype A
associated with highermortality if given corticosteroids.57

Recently, prospective validation of such mRNA ar-
rays has been conducted. For example, IMX-SEV-2 is a
29-host-mRNA classifier designed to predict disease
severity in patients with acute infection or sepsis.22 For
predicting in-hospital mortality, IMX-SEV-2 had an
AUROC of 0.84 (95% CI: 0.76–0.93), higher than lactate,
qSOFA or NEWS2.

Inflammatory phenotypes. Another avenue for the use
of machine learning techniques has been to look for
inflammatory sub-phenotypes based on measurements
of panels of inflammatory mediators either alone or in
conjunction with clinical variables.

The area in which this has had most success is in
Acute Respiratory Distress Syndrome (ARDS), a com-
mon complication of sepsis. LCA has been applied to
several ARDS trials datasets that consist of both routine
variables and inflammatory biomarkers. Across all ana-
lyses, two sub-phenotypes have been consistently
identified25–28 with a hyper-inflammatory sub-phenotype
having features such as higher levels of IL-6, IL-8,
sTNFR1, higher rates of vasopressor use and lower
circulating protein C and bicarbonate than a hypo-
inflammatory sub-phenotype. Importantly in reanalysis
of clinical trial data these inflammatory sub-phenotypes
have been found to have differential responses to several
trial therapies including high or low PEEP strategy,25

liberal versus conservative fluids27 and simvastatin.26 In
a drive to turn these sub-phenotypes, that require large
panels of data and complex clustering methodologies,
into entities that could be used with fewer variables in
the clinical environment, feature selection models have
been applied. These derived parsimonious models,58 and
highlighted bicarbonate, IL-6, IL-8, protein C, sTNFR-1,
and vasopressor use as the most predictive variables.

In another re-analysis of data coming from a rando-
mised trial, machine learning identified the IFNγ/IL10
ratio to be a good biomarker for the decision to administer
hydrocortisone in septic shock.30 This pattern was
confirmed in three separate sepsis trials data.

A similar approach has since been taken in COVID-
1959 where there was a significant overlap between
www.thelancet.com Vol ▪ ▪, 2022
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COVID-19 latent classes and ARDS inflammatory phe-
notypes and where response to corticosteroids was seen
to differ between the two derived classes. There is
now increasing evidence that such inflammatory sub-
phenotypes may be seen in other critically ill pop-
ulations, for example, pancreatitis60 and ventilated
patients without ARDS.61

Hierarchical clustering has been applied to panels of
cytokines, chemokines and growth factors in sepsis62–65

with two to three clusters being identified depending
on the panels of mediators used and the types of pa-
tients included (sepsis, SIRS and healthy controls). As
such it is difficult to draw parallels between these
studies. However, in the largest of these62 three clusters
with high, medium and low cytokine concentrations
were identified. Patients in the high cluster had higher
rates of shock, more coagulation failure and a higher
mortality. However, these studies are generally small
and, as yet, not validated making their clinical relevance
uncertain.

Metabolic phenotypes. Clustering approaches to find
novel subgroups of patients with sepsis have rarely been
applied to metabolic datasets. In a rare example, hier-
archical clustering of plasma metabolic profiles revealed
three clusters with metabolic differences between
groups being mainly driven by plasma lipids.34 The first
group was associated with the highest mortality and
rates of septic shock and had reduced levels of lipids
compared to group 3, the lowest mortality group. The
lipids differentiating groups were mainly fatty acid
metabolites, lysophospholipids and sphingolipids.
Discussion
This narrative review highlighted recent developments
in the application of machine learning models for sepsis
identification and/or phenotyping, towards a more ac-
curate characterisation of its heterogeneous clinical
pictures. Novel models in use, and under development,
which rely on patient vital signs along with routine
clinical and laboratory data, have yielded promising
results for early sepsis detection and prediction.37,39

Evaluation on non-routine datasets, to establish gene
expression, inflammatory and metabolomic sepsis
phenotypes have deepened such analyses further,
crucially informing us on the use of therapies such as
steroids.23,30,57,59 The research highlighted here offers a
number of potential future applications: these tools, in
conjunction with routine clinical and biological infor-
mation, may improve timeliness and accuracy of diag-
nosis, suggest physiological pathways and therapeutic
targets, inform targeted recruitment into clinical trials,
and optimise clinical management. The potential for
machine learning to better target the immune response
in sepsis through precision medicine and enrichment is
promising, after well over 100 “traditional” clinical trials
www.thelancet.com Vol ▪ ▪, 2022
were conducted targeting the systemic inflammatory
response, without significant positive results.51,52

However, there remain significant limitations and
work ahead before these tools realise their full potential,
are validated at the bedside, become certified medical
devices and/or inform sepsis trials inclusion.

Firstly, the challenge of correct sepsis labelling re-
mains pressing. Wide discrepancies in sepsis cohorts
are identified when different sepsis definitions and
identifications methods are applied.66 Bedside screening
tools to detect these patients, such as the quick
Sequential Organ Failure Assessment (qSOFA), lack
sensitivity.67 Physicians themselves often cannot agree
on the presence of an infection.68 Some patients who are
initially not even categorised as having sepsis might
benefit greatly from early administration of antibiotics.69

If inaccuracies or biases are present in training datasets,
supervised machine learning models (used in sepsis
prediction models) could perpetuate those errors or
prejudices. However, machines may be beneficial in
instances where, for example, the amount of data to
process or the pace at which it is generated becomes
larger than what a human can handle.

Secondly, the vast majority of these models have
received little to no prospective validation, so their
external validity remains unknown. For example, Fleu-
ren and colleagues in 2020 identified only three pro-
spective studies and one randomised trial (with 142
patients) on sepsis prediction in the entire literature.37 A
common challenge in developing these sepsis bio-
markers or predictive models is the risk of overfitting:
that the results apply solely to the data in which a
biomarker was developed (or a model was trained), and
fail to generalise to external cohorts.70,71 For example,
this pitfall can be illustrated by the incomplete overlap
between the transcriptomics immunosuppressed phe-
notypes SRS-1 and Mars-1,70 or by the poor performance
of some widely deployed sepsis prediction models.71,72 In
the field of transcriptomics, an important contribution
to this issue has been in studies pooling gene expression
data from multiple cohorts (sometimes upwards of 30)
in attempts to identify global sepsis signatures, shared
across populations.41,70 This comes with unique chal-
lenges such as correcting for the “batch effect”, since
gene expression levels are dependent on the patients’
clinical and ethnic background, as well as on the platform
used for profiling. Methods have been developed to make
datasets comparable, such as co-normalisation algo-
rithms, which allows to “align” gene expression levels
using the values measured in healthy controls in the
studies.41 Several teams demonstrated some success in
the external validity of the signatures developed,21,41,42,70 as
well as in a few prospective observational studies.22

A third limitation is that the vast majority of the
research is still limited to high-income western countries,
although about 85% of sepsis cases in the world occur in
low and middle income countries.73
7
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Finally, one could argue that the use of non-routinely
collected data (gene expression, cytokines …) limits for
the foreseeable future the opportunity to use these
technologies to actually inform clinical practice and trial
enrolment, unless researchers manage to identify a
sparse set of biomarkers, or even better, a unique
biomarker.

In conclusion, machine learning, in conjunction
with routine clinical and biological data, has potential in
precision medicine and enrichment in adult and pae-
diatric sepsis. However, the bulk of the published ap-
plications is represented by early, proof-of-concept
research that remains to be tested for patient benefit.
Outstanding questions
Most of the literature on machine learning models and
biomarkers in sepsis remains limited to small cohorts
and retrospective analyses.

How will the research community interact with the
industry to translate these academic projects into certi-
fied and validated medical devices?

What factors will determine which of those tools will
become widely available and used at the bedside?

Which of these applications, if any, will demon-
strate wide scale and consistent clinical utility, positive
effects on patient outcomes and/or healthcare
delivery?
Search strategy and selection criteria
Data for this review were identified by searches of
MEDLINE, PubMed, Google Scholar and references
from relevant articles using the search terms “sepsis”,
“machine learning”, and “biomarkers”. Only articles
published in English between January 2000 and October
2022 were included.
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