13 research outputs found

    Investigation into the Cell Wall and Cellulose Biosynthesis in Model Species and in the C4 Model Plant \u3cem\u3eSetaria viridis\u3c/em\u3e

    Get PDF
    A uniform feature of all plant cells is the presence of a cell wall. The cell wall functions in facilitating directional expansion and is therefore important for cell shape and morphogenesis. All plant cell walls contain cellulose microfibrils embedded in a network of polysaccharides, lignin and protein. Cellulose is evolutionarily conserved and is made by all plants as well as other members of various taxonomic kingdoms. From a human perspective, the field of renewable energy has had an ever increasing interest in using the cell wall for production of renewable platform chemicals and fuels. However, the biosynthesis of these components is complex and the intricacies are still being solved. Herein, a molecular genetics approach was taken to advance our understanding of cell wall biosynthesis. Initial work proposes a C4 model grass Setaria viridis as well as for the crop plant Sorghum bicolor for genetic analysis. The machinery that is responsible for the biosynthesis the cell wall such as the cellulose synthase (CESA) enzymes were identified and the compositional analysis of the cell wall was conducted. In addition, the role of a cellulose synthase like D1 (CSLD1) gene was studied using reverse genetics. Finally, regulatory features called microRNAs that may intersect with lignin biosynthesis were explored through a series of molecular genetic analyses using Arabidopsis

    Equal-Spin Andreev Reflection in Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor

    Full text link
    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices

    Comparative Feedstock Analysis in \u3cem\u3eSetaria viridis\u3c/em\u3e L. as a Model for C\u3csub\u3e4\u3c/sub\u3e Bioenergy Grasses and Panicoid Crop Species

    Get PDF
    Second generation feedstocks for bioethanol will likely include a sizable proportion of perennial C4 grasses, principally in the Panicoideae clade. The Panicoideae contain agronomically important annual grasses including Zea mays L. (maize), Sorghum bicolor (L.) Moench (sorghum), and Saccharum officinarum L. (sugar cane) as well as promising second generation perennial feedstocks including Miscanthus × giganteus and Panicum virgatum L. (switchgrass). The underlying complexity of these polyploid grass genomes is a major limitation for their direct manipulation and thus driving a need for rapidly cycling comparative model. Setaria viridis (green millet) is a rapid cycling C4 panicoid grass with a relatively small and sequenced diploid genome and abundant seed production. Stable, transient, and protoplast transformation technologies have also been developed for Setaria viridis making it a potentially excellent model for other C4 bioenergy grasses. Here, the lignocellulosic feedstock composition, cellulose biosynthesis inhibitor response and saccharification dynamics of Setaria viridis are compared with the annual sorghum and maize and the perennial switchgrass bioenergy crops as a baseline study into the applicability for translational research. A genome-wide systematic investigation of the cellulose synthase-A genes was performed identifying eight candidate sequences. Two developmental stages; (a) metabolically active young tissue and (b) metabolically plateaued (mature) material are examined to compare biomass performance metrics

    Sorghum mutant RG displays antithetic leaf shoot lignin accumulation resulting in improved stem saccharification properties

    Get PDF
    BACKGROUND: Improving saccharification efficiency in bioenergy crop species remains an important challenge. Here, we report the characterization of a Sorghum (Sorghum bicolor L.) mutant, named REDforGREEN (RG), as a bioenergy feedstock. RESULTS: It was found that RG displayed increased accumulation of lignin in leaves and depletion in the stems, antithetic to the trend observed in wild type. Consistent with these measurements, the RG leaf tissue displayed reduced saccharification efficiency whereas the stem saccharification efficiency increased relative to wild type. Reduced lignin was linked to improved saccharification in RG stems, but a chemical shift to greater S:G ratios in RG stem lignin was also observed. Similarities in cellulose content and structure by XRD-analysis support the correlation between increased saccharification properties and reduced lignin instead of changes in the cellulose composition and/or structure. CONCLUSION: Antithetic lignin accumulation was observed in the RG mutant leaf-and stem-tissue, which resulted in greater saccharification efficiency in the RG stem and differential thermochemical product yield in high lignin leaves. Thus, the red leaf coloration of the RG mutant represents a potential marker for improved conversion of stem cellulose to fermentable sugars in the C4 grass Sorghum

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Genomic evolution of MHC class I region in primates

    No full text
    To elucidate the origins of the MHC-B-MHC-C pair and the MHC class I chain-related molecule (MIC)A-MICB pair, we sequenced an MHC class I genomic region of humans, chimpanzees, and rhesus monkeys and analyzed the regions from an evolutionary stand-point, focusing first on LINE sequences that are paralogous within each of the first two species and orthologous between them. Because all the long interspersed nuclear element (LINE) sequences were fragmented and nonfunctional, they were suitable for conducting phylogenetic study and, in particular, for estimating evolutionary time. Our study has revealed that MHC-B and MHC-C duplicated 22.3 million years (Myr) ago, and the ape MICA and MICB duplicated 14.1 Myr ago. We then estimated the divergence time of the rhesus monkey by using other orthologous LINE sequences in the class I regions of the three primate species. The result indicates that rhesus monkeys, and possibly the Old World monkeys in general, diverged from humans 27-30 Myr ago. Interestingly, rhesus monkeys were found to have not the pair of MHC-B and MHC-C but many repeated genes similar to MHC-B. These results support our inference that MHC-B and MHC-C duplicated after the divergence between apes and Old World monkeys
    corecore