23 research outputs found

    Insights into the mechanism of diurnal variations in methane emission from the stem surfaces of Alnus japonica

    Get PDF
    木の中にガスパイプライン? --ガス漏れの場所を特定せよ!--. 京都大学プレスリリース. 2022-07-15.Recent studies have suggested that in certain environments, tree stems emit methane (CH₄). This study explored the mechanism of CH₄ emission from the stem surfaces of Alnus japonica in a riparian wetland. Stem CH₄ emission rates and sap flux were monitored year-round, and fine-root anatomy was investigated. CH₄ emission rates were estimated using a closed-chamber method. Sap flux was measured using Granier-type thermal dissipation probes. Root anatomy was studied using both optical and cryo-scanning electron microscopy. CH₄ emissions during the leafy season exhibited a diurnally changing component superimposed upon an underlying continuum in which the diurnal variation was in phase with sap flux. We propose a model in which stem CH₄ emission involves at least two processes: a sap flux-dependent component responsible for the diurnal changes, and a sap flux-independent component responsible for the background continuum. The contribution ratios of the two processes are season-dependent. The background continuum possibly resulted from the diffusive transport of gaseous CH₄ from the roots to the upper trunk. Root anatomy analysis indicated that the intercellular space of the cortex and empty xylem cells in fine roots could serve as a passageway for transport of gaseous CH₄

    Association between serum calcium levels and prognosis, hematoma volume, and onset of cerebral hemorrhage in patients undergoing hemodialysis

    Get PDF
    Background: High serum calcium levels should be avoided in patients on hemodialysis (HD) because they can induce cardiovascular diseases and worsen the patient\u27s prognosis. In contrast, low serum calcium levels worsen the prognosis of patients with cerebral hemorrhage in the general population. So far, whether serum calcium levels in patients on HD are associated with cerebral hemorrhage remains unknown. This study aimed to reveal the association between serum calcium and cerebral hemorrhage in patients on HD, including in-hospital death, volume of hematoma, and onset of cerebral hemorrhage. Methods: This cross-sectional case-control study included 99 patients on HD with cerebral hemorrhage at a single center between July 1, 2007 and December 31, 2017. Controls included 339 patients on HD at a single HD center between July 1, 2011 and June 30, 2012. Data on serum calcium level, patient demographics, and comorbid conditions were collected, and associations between cerebral hemorrhage and subsequent death were evaluated by multivariate logistic regression analysis. Further, the association of these backgrounds and hematoma volume was evaluated by multiple regression analysis. Results: Of the 99 patients, 32 (32%) died from cerebral hemorrhage. The corrected serum calcium level (odds ratio [OR], 2.49; 95% confidence interval [CI], 1.43-4.35; P < 0.001) and antiplatelet drug use (OR, 3.95; 95% CI, 1.50-10.4; P = 0.005)had significant effects on the prognosis. Moreover, the corrected serum calcium (P = 0.003) and antiplatelet drug use (P = 0.01) were significantly correlated with hematoma volume. In the patients, the corrected serum calcium level (OR, 1.54; 95% CI, 1.07-2.22; P = 0.02) was associated with the onset of cerebral hemorrhage, as was pre-hemodialysis systolic blood pressure (per 10 mmHg) (OR, 1.40; 95% CI, 1.23-1.59; P < 0.001). Conclusions: Although the precise mechanisms remain unknown, a high serum calcium level is associated with cerebral hemorrhage in patients on HD. Thus, we should pay attentions to a patient\u27s calcium level

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    A New Feature with the Potential to Detect the Severity of Obstructive Sleep Apnoea via Snoring Sound Analysis

    No full text
    The severity of obstructive sleep apnoea (OSA) is diagnosed with polysomnography (PSG), during which patients are monitored by over 20 physiological sensors overnight. These sensors often bother patients and may affect patients&rsquo; sleep and OSA. This study aimed to investigate a method for analyzing patient snore sounds to detect the severity of OSA. Using a microphone placed at the patient&rsquo;s bedside, the snoring and breathing sounds of 22 participants were recorded while they simultaneously underwent PSG. We examined some features from the snoring and breathing sounds and examined the correlation between these features and the snore-specific apnoea-hypopnea index (ssAHI), defined as the number of apnoea and hypopnea events during the hour before a snore episode. Statistical analyses revealed that the ssAHI was positively correlated with the Mel frequency cepstral coefficients (MFCC) and volume information (VI). Based on clustering results, mild snore sound episodes and snore sound episodes from mild OSA patients were mainly classified into cluster 1. The results of clustering severe snore sound episodes and snore sound episodes from severe OSA patients were mainly classified into cluster 2. The features of snoring sounds that we identified have the potential to detect the severity of OSA

    Serum CXCL9 and CCL17 as biomarkers of declining pulmonary function in chronic bird-related hypersensitivity pneumonitis.

    No full text
    The clinical course of chronic hypersensitivity pneumonitis (HP) with fibrosis is similar to that of idiopathic pulmonary fibrosis (IPF). Current research is expected to identify biomarkers effective in predicting the deterioration of lung function in a clinical setting. Our group analyzed the relationships between the following parameters in chronic bird-related HP: patient characteristics, serum markers, lung function, HRCT findings, BALF profiles, and the worsening of lung function. We also analyzed serum levels of CXCL9, CCL17, and Krebs von den Lungen 6 (KL-6) as serum markers. Patients showing declines in vital capacity (VC) of over 5% at 6 months after first admission were categorized as the "decline group"; the others were categorized as the "stable group." The serum level of CCL17 and the percentage of BALF macrophages were significantly higher in the decline group compared to the stable group. Serum levels of CXCL9 and CCL17 were significant variables in a multivariate logistic regression analysis of factors associated with VC decline. Patients with a chemokine profile combining lower serum CXCL9 and higher serum CCL17 exhibited significantly larger VC decline in a cluster analysis. Higher serum CCL17 and lower serum CXCL9 were important predictors of worsening lung function in patients with chronic bird-related HP

    Interleukin-17A and Neutrophils in a Murine Model of Bird-Related Hypersensitivity Pneumonitis.

    No full text
    Hypersensitivity pneumonitis (HP) is an immune mediated lung disease induced by the repeated inhalation of a wide variety of antigens. Bird-related hypersensitivity pneumonitis (BRHP) is one of the most common forms of HP in human and results from the inhalation of avian antigens. The findings of a recent clinical analysis suggest that in addition to Th1 factors, the levels of interleukin(IL)-17 and IL-17-associated transcripts are increased in the setting of HP, and that both IL-17A and neutrophils are crucial for the development of pulmonary inflammation in murine models of HP. Our objectives were to investigate the roles of IL-17A and neutrophils in granuloma-forming inflammation in an acute HP model. We developed a mouse model of acute BRHP using pigeon dropping extract. We evaluated the process of granuloma formation and the roles of both IL-17A and neutrophils in a model. We found that the neutralization of IL-17A by the antibody attenuated granuloma formation and the recruitment of neutrophils, and also decreased the expression level of chemokine(C-X-C motif) ligand 5 (CXCL5) in the acute HP model. We confirmed that most of the neutrophils in the acute HP model exhibited immunoreactivity to the anti-IL-17 antibody. We have identified the central roles of both IL-17A and neutrophils in the pathogenesis of granuloma formation in acute HP. We have also assumed that neutrophils are an important source of IL-17A in an acute HP model, and that the IL-17A-CXCL5 pathway may be responsible for the recruitment of neutrophils

    An evaluation of the inflammatory changes via measurements of the collagen content of the lungs.

    No full text
    <p>A: The collagen content of the pigeon dropping extract(PDE)-challenged mice. The values on days 7 and 10 were significantly increased compared with days 0 and 2. B: The collagen contents on day 10 in the saline-treated mice and the PDE-challenged mice, with and without anti-interleukin(IL)-17A antibody administration. The values among the PDE-challenged mice were not significantly different compared with those of the saline-treated mice, whereas the values of the PDE-challenged mice subjected to anti-IL-17A antibody administration were significantly decreased compared with the PDE-challenged mice (<i>P</i> = 0.029). The data are presented as means ± standard errors of the mean (SEs) for each group (day 0–10: n = 7–11, control group: n = 10, PDE group: n = 11, anti-IL-17A group: n = 8). *: <i>P</i> < 0.05, **: <i>P</i> < 0.01.</p
    corecore