339 research outputs found

    Renormalization and blow up for charge one equivariant critical wave maps

    Full text link
    We prove the existence of equivariant finite time blow up solutions for the wave map problem from 2+1 dimensions into the 2-sphere. These solutions are the sum of a dynamically rescaled ground-state harmonic map plus a radiation term. The local energy of the latter tends to zero as time approaches blow up time. This is accomplished by first "renormalizing" the rescaled ground state harmonic map profile by solving an elliptic equation, followed by a perturbative analysis

    Global Schr\"{o}dinger maps

    Full text link
    We consider the Schr\"{o}dinger map initial-value problem in dimension two or greater. We prove that the Schr\"{o}dinger map initial-value problem admits a unique global smooth solution, provided that the initial data is smooth and small in the critical Sobolev space. We prove also that the solution operator extends continuously to the critical Sobolev space.Comment: 60 page

    Carleman estimates and absence of embedded eigenvalues

    Full text link
    Let L be a Schroedinger operator with potential W in L^{(n+1)/2}. We prove that there is no embedded eigenvalue. The main tool is an Lp Carleman type estimate, which builds on delicate dispersive estimates established in a previous paper. The arguments extend to variable coefficient operators with long range potentials and with gradient potentials.Comment: 26 page

    Strichartz estimates on Schwarzschild black hole backgrounds

    Get PDF
    We study dispersive properties for the wave equation in the Schwarzschild space-time. The first result we obtain is a local energy estimate. This is then used, following the spirit of earlier work of Metcalfe-Tataru, in order to establish global-in-time Strichartz estimates. A considerable part of the paper is devoted to a precise analysis of solutions near the trapping region, namely the photon sphere.Comment: 44 pages; typos fixed, minor modifications in several place

    Concerning the Wave equation on Asymptotically Euclidean Manifolds

    Full text link
    We obtain KSS, Strichartz and certain weighted Strichartz estimate for the wave equation on (Rd,g)(\R^d, \mathfrak{g}), d≄3d \geq 3, when metric g\mathfrak{g} is non-trapping and approaches the Euclidean metric like x−ρ x ^{- \rho} with ρ>0\rho>0. Using the KSS estimate, we prove almost global existence for quadratically semilinear wave equations with small initial data for ρ>1\rho> 1 and d=3d=3. Also, we establish the Strauss conjecture when the metric is radial with ρ>0\rho>0 for d=3d= 3.Comment: Final version. To appear in Journal d'Analyse Mathematiqu

    On the 2d Zakharov system with L^2 Schr\"odinger data

    Full text link
    We prove local in time well-posedness for the Zakharov system in two space dimensions with large initial data in L^2 x H^{-1/2} x H^{-3/2}. This is the space of optimal regularity in the sense that the data-to-solution map fails to be smooth at the origin for any rougher pair of spaces in the L^2-based Sobolev scale. Moreover, it is a natural space for the Cauchy problem in view of the subsonic limit equation, namely the focusing cubic nonlinear Schroedinger equation. The existence time we obtain depends only upon the corresponding norms of the initial data - a result which is false for the cubic nonlinear Schroedinger equation in dimension two - and it is optimal because Glangetas-Merle's solutions blow up at that time.Comment: 30 pages, 2 figures. Minor revision. Title has been change

    Explaining the Better Prognosis of ScreeningExposed Breast Cancers: Influence of Tumor Characteristics and Treatment

    Get PDF
    This study was funded by a grant from the UK Department of Health (no. 106/0001). The grant was awarded to Prof Stephen W Duffy
    • 

    corecore