5,824 research outputs found
Extensions of Picard 2-Stacks and the cohomology groups Ext^i of length 3 complexes
The aim of this paper is to define and study the 3-category of extensions of
Picard 2-stacks over a site S and to furnish a geometrical description of the
cohomology groups Ext^i of length 3 complexes of abelian sheaves. More
precisely, our main Theorem furnishes
(1) a parametrization of the equivalence classes of objects, 1-arrows,
2-arrows, and 3-arrows of the 3-category of extensions of Picard 2-stacks by
the cohomology groups Ext^i, and
(2) a geometrical description of the cohomology groups Ext^i of length 3
complexes of abelian sheaves via extensions of Picard 2-stacks.
To this end, we use the triequivalence between the 3-category of Picard
2-stacks and the tricategory T^[-2,0](S) of length 3 complexes of abelian
sheaves over S introduced by the second author in arXiv:0906.2393, and we
define the notion of extension in this tricategory T^[-2,0](S), getting a pure
algebraic analogue of the 3-category of extensions of Picard 2-stacks. The
calculus of fractions that we use to define extensions in the tricategory
T^[-2,0](S) plays a central role in the proof of our Main Theorem.Comment: 2 New Appendix: in the first Appendix we compute a long exact
sequence involving the homotopy groups of an extension of Picard 2-stacks,
and in the second Appendix we sketch the proof that the fibered sum of Picard
2-stacks satisfies the universal propert
Puzzles for Matrix Models of Chiral Field Theories
We summarize the field-theory/matrix model correspondence for a chiral N=1
model with matter in the adjoint, antisymmetric and conjugate symmetric
representations as well as eight fundamentals to cancel the chiral anomaly. The
associated holomorphic matrix model is consistent only for two fundamental
fields, which requires a modification of the original Dijkgraaf-Vafa
conjecture. The modified correspondence holds in spite of this mismatch.Comment: Contribution to the proceedings of the 36th International Symposium
Ahrenshoop, Berlin, August 26-30, 2003; 6 Page
Flavor Structure in F-theory Compactifications
F-theory is one of frameworks in string theory where supersymmetric grand
unification is accommodated, and all the Yukawa couplings and Majorana masses
of right-handed neutrinos are generated. Yukawa couplings of charged fermions
are generated at codimension-3 singularities, and a contribution from a given
singularity point is known to be approximately rank 1. Thus, the approximate
rank of Yukawa matrices in low-energy effective theory of generic F-theory
compactifications are minimum of either the number of generations N_gen = 3 or
the number of singularity points of certain types. If there is a geometry with
only one E_6 type point and one D_6 type point over the entire 7-brane for
SU(5) gauge fields, F-theory compactified on such a geometry would reproduce
approximately rank-1 Yukawa matrices in the real world. We found, however, that
there is no such geometry. Thus, it is a problem how to generate hierarchical
Yukawa eigenvalues in F-theory compactifications. A solution in the literature
so far is to take an appropriate factorization limit. In this article, we
propose an alternative solution to the hierarchical structure problem (which
requires to tune some parameters) by studying how zero mode wavefunctions
depend on complex structure moduli. In this solution, the N_gen x N_gen CKM
matrix is predicted to have only N_gen entries of order unity without an extra
tuning of parameters, and the lepton flavor anarchy is predicted for the lepton
mixing matrix. We also obtained a precise description of zero mode
wavefunctions near the E_6 type singularity points, where the up-type Yukawa
couplings are generated.Comment: 148 page
GUT theories from Calabi-Yau 4-folds with SO(10) Singularities
We consider an SO(10) GUT model from F-theory compactified on an elliptically
fibered Calabi-Yau with a D5 singularity. To obtain the matter curves and the
Yukawa couplings, we use a global description to resolve the singularity. We
identify the vector and spinor matter representations and their Yukawa
couplings and we explicitly build the G-fluxes in the global model and check
the agreement with the semi-local results. As our bundle is of type SU(2k),
some extra conditions need to be applied to match the fluxes.Comment: 27 page
The evolution of bits and bottlenecks in a scientific workflow trying to keep up with technology: Accelerating 4D image segmentation applied to nasa data
In 2016, a team of earth scientists directly engaged a team of computer scientists to identify cyberinfrastructure (CI) approaches that would speed up an earth science workflow. This paper describes the evolution of that workflow as the two teams bridged CI and an image segmentation algorithm to do large scale earth science research. The Pacific Research Platform (PRP) and The Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI) resources were used to significantly decreased the earth science workflow's wall-clock time from 19.5 days to 53 minutes. The improvement in wall-clock time comes from the use of network appliances, improved image segmentation, deployment of a containerized workflow, and the increase in CI experience and training for the earth scientists. This paper presents a description of the evolving innovations used to improve the workflow, bottlenecks identified within each workflow version, and improvements made within each version of the workflow, over a three-year time period
Meta-Stable Brane Configurations by Adding an Orientifold-Plane to Giveon-Kutasov
In hep-th/0703135, they have found the type IIA intersecting brane
configuration where there exist three NS5-branes, D4-branes and anti-D4-branes.
By analyzing the gravitational interaction for the D4-branes in the background
of the NS5-branes, the phase structures in different regions of the parameter
space were studied in the context of classical string theory. In this paper, by
adding the orientifold 4-plane and 6-plane to the above brane configuration, we
describe the intersecting brane configurations of type IIA string theory
corresponding to the meta-stable nonsupersymmetric vacua of these gauge
theories.Comment: 21 pp, 6 figures; reduced bytes of figures, DBI action analysis added
and to appear in JHE
A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans
Small molecule metabolites play important roles in Caenorhabditis elegans biology, but effective approaches for identifying their chemical structures are lacking. Recent studies revealed that a family of glycosides, the ascarosides, differentially regulate C. elegans development and behavior. Low concentrations of ascarosides attract males and thus appear to be part of the C. elegans sex pheromone, whereas higher concentrations induce developmental arrest at the dauer stage, an alternative, nonaging larval stage. The ascarosides act synergistically, which presented challenges for their identification via traditional activity-guided fractionation. As a result the chemical characterization of the dauer and male attracting pheromones remained incomplete. Here, we describe the identification of several additional pheromone components by using a recently developed NMR-spectroscopic approach, differential analysis by 2D NMR spectroscopy (DANS), which simplifies linking small molecule metabolites with their biological function. DANS-based comparison of wild-type C. elegans and a signaling-deficient mutant, daf-22, enabled identification of 3 known and 4 previously undescribed ascarosides, including a compound that features a p-aminobenzoic acid subunit. Biological testing of synthetic samples of these compounds revealed additional evidence for synergy and provided insights into structure–activity relationships. Using a combination of the three most active ascarosides allowed full reconstitution of the male-attracting activity of wild-type pheromone extract. Our results highlight the efficacy of DANS as a method for identifying small-molecule metabolites and placing them within a specific genetic context. This study further supports the hypothesis that ascarosides represent a structurally diverse set of nematode signaling molecules regulating major life history traits
Supersymmetry Breaking Vacua from M Theory Fivebranes
We consider intersecting brane configurations realizing N=2 supersymmetric
gauge theories broken to N=1 by multitrace superpotentials, and softly to N=0.
We analyze, in the framework of M5-brane wrapping a curve, the supersymmetric
vacua and the analogs of spontaneous supersymmetry breaking and soft
supersymmetry breaking in gauge theories. We show that the M5-brane does not
exhibit the analog of metastable spontaneous supersymmetry breaking, and does
not have non-holomorphic minimal volume curves with holomorphic boundary
conditions. However, we find that any point in the N=2 moduli space can be
rotated to a non-holomorphic minimal volume curve, whose boundary conditions
break supersymmetry. We interpret these as the analogs of soft supersymmetry
breaking vacua in the gauge theory.Comment: 32 pages, 8 figures, harvmac; v2: corrections in eq. 3.6 and in
section 6, reference adde
- …
