4 research outputs found

    Randomized Efficacy Trial of a Micronutrient-Fortified Beverage in Primary School Children in Tanzania.

    Get PDF
    Dietary supplements providing physiologic amounts of several micronutrients simultaneously have not been thoroughly tested for combating micronutrient deficiencies. We determined whether a beverage fortified with 10 micronutrients at physiologic doses influenced the iron and vitamin A status and growth of rural children (aged 6-11 y) attending primary schools. In this randomized, double-blind, placebo-controlled efficacy trial, children were assigned to receive the fortified beverage or an unfortified beverage at school for 6 mo. There were nonsignificant differences at baseline between children in the fortified and nonfortified groups in iron status, serum retinol, and anthropometry. At the 6-mo follow-up, among children with anemia (hemoglobin < 110 g/L), there was a significantly larger increase in hemoglobin concentration in the fortified group than in the nonfortified group (9.2 and 0.2 g/L, respectively). Of those who were anemic at baseline, 69.4% in the nonfortified group and 55.1% in the fortified group remained anemic at follow-up (RR: 0.79), a cure rate of 21%. The prevalence of children with low serum retinol concentrations (< 200 microg/L) dropped significantly from 21.4% to 11.3% in the fortified group compared with a nonsignificant change (20.6% to 19.7%) in the nonfortified group. At follow-up, mean incremental changes in weight (1.79 compared with 1.24 kg), height (3.2 compared with 2.6 cm), and BMI (0.88 compared with 0.53) were significantly higher in the fortified group than in the nonfortified group. The fortified beverage significantly improved hematologic and anthropometric measurements and significantly lowered the overall prevalence of anemia and vitamin A deficiency

    The Synergistic Effect of Concomitant Schistosomiasis, Hookworm, and Trichuris Infections on Children's Anemia Burden

    Get PDF
    Polyparasitic infections have been recognized as the norm in many tropical developing countries, but the significance of this phenomenon for helminth-associated morbidities is largely unexplored. Earlier studies have suggested that multi-species, low-intensity parasitic infections were associated with higher odds of anemia among school-age children relative to their uninfected counterparts or those with one low-intensity infection. However, specific studies of the nature of interactions between helminth species in the mediation of helminth-associated morbidities are lacking. This study quantifies the extent to which polyparasitic infections have more than the sum of adverse effects associated with individual infections in the context of childhood anemia. This study found that the risk of anemia is amplified beyond the sum of risks for individual infections in children simultaneously exposed to 1) hookworm and schistosomiasis, and 2) hookworm and trichuris, and suggests that combined treatment for some geohelminth species and schistosomiasis could yield greater than additive benefits for the reduction of childhood anemia in helminth-endemic areas. However, more studies to understand the full range of interactions between parasitic species in their joint effects on helminth-associated morbidities will be necessary to better predict the impact of any future public health intervention
    corecore