32 research outputs found

    British citizenship, gender and migration: the containment of cultural differences and the stratification of belonging

    Get PDF
    Debates about integration, British values and identity, who can belong and who can become a citizen, have been fuelled by concerns about growing cultural diversity in the United Kingdom. To promote a shared sense of national identity and claim a universal and normative citizen subject, the UK government, along with many other western nations, has introduced compulsory citizenship and language testing. This article traces and critiques the evolution of the British citizenship test since its introduction in 2005 and argues that the regime fails to recognise the gendered and segmented nature of migration, and functions as a silent and largely invisible mechanism of civic stratification and control. Drawing on Home Office data, it is argued that citizenship testing enables the government to cherry pick migrants who conform to an idealised citizen subject, while containing cultural difference by excluding others, particularly women, who are tolerated but remain symbolic non-citizens

    Transcriptome Analysis Identifies Immune Markers Related to Visceral Leishmaniasis Establishment in the Experimental Model of BALB/c Mice

    No full text
    Visceral leishmaniasis (VL) caused by Leishmania donovani and L. infantum is a potentially fatal disease. To date there are no registered vaccines for disease prevention despite the fact that several vaccines are in preclinical development. Thus, new strategies are needed to improve vaccine efficacy based on a better understanding of the mechanisms mediating protective immunity and mechanisms of host immune responses subversion by immunopathogenic components of Leishmania. We found that mice vaccinated with CPA162−189-loaded p8-PLGA nanoparticles, an experimental nanovaccine, induced the differentiation of antigen-specific CD8+ T cells in spleen compared to control mice, characterized by increased dynamics of proliferation and high amounts of IFN-γ production after ex vivo re-stimulation with CPA162−189 antigen. Vaccination with CPA162−189-loaded p8-PLGA nanoparticles resulted in about 80% lower parasite load in spleen and liver at 4 weeks after challenge with L. infantum promastigotes as compared to control mice. However, 16 weeks after infection the parasite load in spleen was comparable in both mouse groups. Decreased protection levels in vaccinated mice were followed by up-regulation of the anti-inflammatory IL-10 production although at lower levels in comparison to control mice. Microarray analysis in spleen tissue at 4 weeks post challenge revealed different immune-related profiles among the two groups. Specifically, vaccinated mice were characterized by similar profile to naïve mice. On the other hand, the transcriptome of the non-vaccinated mice was dominated by increased expression of genes related to interferon type I, granulocyte chemotaxis, and immune cells suppression. This profile was significantly enriched at 16 weeks post challenge, a time-point which is relative to disease establishment, and was common for both groups, further suggesting that type I signaling and granulocyte influx has a significant role in disease establishment, pathogenesis and eventually in decreased vaccine efficacy for stimulating long-term protection. Overall, we put a spotlight on host immune networks during active VL as potential targets to improve and design more effective vaccines against disease. © Copyright © 2019 Agallou, Athanasiou, Kammona, Tastsoglou, Hatzigeorgiou, Kiparissides and Karagouni

    A species-specific lncRNA modulates the reproductive ability of the asian tiger mosquito

    No full text
    Long non-coding RNA (lncRNA) research has emerged as an independent scientific field in recent years. Despite their association with critical cellular and metabolic processes in plenty of organisms, lncRNAs are still a largely unexplored area in mosquito research. We propose that they could serve as exceptional tools for pest management due to unique features they possess. These include low inter-species sequence conservation and high tissue specificity. In the present study, we investigated the role of ovary-specific lncRNAs in the reproductive ability of the Asian tiger mosquito, Aedes albopictus. Through the analysis of transcriptomic data, we identified several lncRNAs that were differentially expressed upon blood feeding; we called these genes Norma (NOn-coding RNA in Mosquito ovAries). We observed that silencing some of these Normas resulted in significant impact on mosquito fecundity and fertility. We further focused on Norma3 whose silencing resulted in 43% oviposition reduction, in smaller ovaries and 53% hatching reduction of the laid eggs, compared to anti-GFP controls. Moreover, a significant downregulation of 2 mucins withing a neighboring (∼100 Kb) mucin cluster was observed in smaller anti-Norma3 ovaries, indicating a potential mechanism of in-cis regulation between Norma3 and the mucins. Our work constitutes the first experimental proof-of-evidence connecting lncRNAs with mosquito reproduction and opens a novel path for pest management. Copyright © 2022 Belavilas-Trovas, Gregoriou, Tastsoglou, Soukia, Giakountis and Mathiopoulos

    Impact of helicobacter pylori infection and its major virulence factor caga on dna damage repair

    No full text
    Helicobacter pylori infection induces a plethora of DNA damages. Gastric epithelial cells, in order to maintain genomic integrity, require an integrous DNA damage repair (DDR) machinery, which, however, is reported to be modulated by the infection. CagA is a major H. pylori virulence factor, associated with increased risk for gastric carcinogenesis. Its pathogenic activity is partly regulated by phosphorylation on EPIYA motifs. Our aim was to identify effects of H. pylori infection and CagA on DDR, investigating the transcriptome of AGS cells, infected with wild-type, ∆CagA and EPIYA-phosphorylation-defective strains. Upon RNA-Seq-based transcriptomic analysis, we observed that a notable number of DDR genes were found deregulated during the infection, potentially resulting to base excision repair and mismatch repair compromise and an intricate deregulation of nucleotide excision repair, homologous recombination and non-homologous end-joining. Transcriptome observations were further investigated on the protein expression level, utilizing infections of AGS and GES-1 cells. We observed that CagA contributed to the downregulation of Nth Like DNA Glycosylase 1 (NTHL1), MutY DNA Glycosylase (MUTYH), Flap Structure-Specific Endonuclease 1 (FEN1), RAD51 Recombinase, DNA Polymerase Delta Catalytic Subunit (POLD1), and DNA Ligase 1 (LIG1) and, contrary to transcriptome results, Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) upregulation. Our study accentuates the role of CagA as a significant contributor of H. pylori infection-mediated DDR modulation, potentially disrupting the balance between DNA damage and repair, thus favoring genomic instability and carcinogenesis. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Impact of helicobacter pylori infection and its major virulence factor caga on dna damage repair

    No full text
    Helicobacter pylori infection induces a plethora of DNA damages. Gastric epithelial cells, in order to maintain genomic integrity, require an integrous DNA damage repair (DDR) machinery, which, however, is reported to be modulated by the infection. CagA is a major H. pylori virulence factor, associated with increased risk for gastric carcinogenesis. Its pathogenic activity is partly regulated by phosphorylation on EPIYA motifs. Our aim was to identify effects of H. pylori infection and CagA on DDR, investigating the transcriptome of AGS cells, infected with wild-type, ∆CagA and EPIYA-phosphorylation-defective strains. Upon RNA-Seq-based transcriptomic analysis, we observed that a notable number of DDR genes were found deregulated during the infection, potentially resulting to base excision repair and mismatch repair compromise and an intricate deregulation of nucleotide excision repair, homologous recombination and non-homologous end-joining. Transcriptome observations were further investigated on the protein expression level, utilizing infections of AGS and GES-1 cells. We observed that CagA contributed to the downregulation of Nth Like DNA Glycosylase 1 (NTHL1), MutY DNA Glycosylase (MUTYH), Flap Structure-Specific Endonuclease 1 (FEN1), RAD51 Recombinase, DNA Polymerase Delta Catalytic Subunit (POLD1), and DNA Ligase 1 (LIG1) and, contrary to transcriptome results, Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) upregulation. Our study accentuates the role of CagA as a significant contributor of H. pylori infection-mediated DDR modulation, potentially disrupting the balance between DNA damage and repair, thus favoring genomic instability and carcinogenesis. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts

    No full text
    DIANA-LncBase v3.0 (www.microrna.gr/LncBase) is a reference repository with experimentally supported miRNA targets on non-coding transcripts. Its third version provides approximately half a million entries, corresponding to ∼240 000 unique tissue and cell type specific miRNA-lncRNA pairs. This compilation of interactions is derived from the manual curation of publications and the analysis of >300 high-throughput datasets. miRNA targets are supported by 14 experimental methodologies, applied to 243 distinct cell types and tissues in human and mouse. The largest part of the database is highly confident, AGO-CLIP-derived miRNA-binding events. LncBase v3.0 is the first relevant database to employ a robust CLIP-Seq-guided algorithm, microCLIP framework, to analyze 236 AGO-CLIP-Seq libraries and catalogue ∼370 000 miRNA binding events. The database was redesigned from the ground up, providing new functionalities. Known short variant information, on >67,000 experimentally supported target sites and lncRNA expression profiles in different cellular compartments are catered to users. Interactive visualization plots, portraying correlations of miRNA-lncRNA pairs, as well as lncRNA expression profiles in a wide range of cell types and tissues, are presented for the first time through a dedicated page. LncBase v3.0 constitutes a valuable asset for ncRNA research, providing new insights to the understanding of the still widely unexplored lncRNA functions. © 2019 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research

    DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts

    No full text
    DIANA-LncBase v3.0 (www.microrna.gr/LncBase) is a reference repository with experimentally supported miRNA targets on non-coding transcripts. Its third version provides approximately half a million entries, corresponding to ∼240 000 unique tissue and cell type specific miRNA-lncRNA pairs. This compilation of interactions is derived from the manual curation of publications and the analysis of >300 high-throughput datasets. miRNA targets are supported by 14 experimental methodologies, applied to 243 distinct cell types and tissues in human and mouse. The largest part of the database is highly confident, AGO-CLIP-derived miRNA-binding events. LncBase v3.0 is the first relevant database to employ a robust CLIP-Seq-guided algorithm, microCLIP framework, to analyze 236 AGO-CLIP-Seq libraries and catalogue ∼370 000 miRNA binding events. The database was redesigned from the ground up, providing new functionalities. Known short variant information, on >67,000 experimentally supported target sites and lncRNA expression profiles in different cellular compartments are catered to users. Interactive visualization plots, portraying correlations of miRNA-lncRNA pairs, as well as lncRNA expression profiles in a wide range of cell types and tissues, are presented for the first time through a dedicated page. LncBase v3.0 constitutes a valuable asset for ncRNA research, providing new insights to the understanding of the still widely unexplored lncRNA functions. © 2019 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research

    The molecular biology of the olive fly comes of age

    Get PDF
    Background: Olive cultivation blends with the history of the Mediterranean countries since ancient times. Even today, activities around the olive tree constitute major engagements of several people in the countryside of both sides of the Mediterranean basin. The olive fly is, beyond doubt, the most destructive pest of cultivated olives. The female fly leaves its eggs in the olive fruit. Upon emergence, the larvae feed on the olive sap, thus destroying the fruit. If untreated, practically all olives get infected. The use of chemical insecticides constitutes the principal olive fly control approach. The Sterile Insect Technique (SIT), an environmentally friendly alternative control method, had been tried in pilot field applications in the 1970' s, albeit with no practical success. This was mainly attributed to the low, non-antagonistic quality of the mixed-sex released insects. Many years of experience from successful SIT applications in related species, primarily the Mediterranean fruit fly, Ceratitis capitata, demonstrated that efficient SIT protocols require the availability of fundamental genetic and molecular information. Results: Among the primary systems whose understanding can contribute towards novel SIT approaches (or its recently developed alternative RIDL: Release of Insects carrying a Dominant Lethal) is the reproductive, since the ability to manipulate the reproductive system would directly affect the insect's fertility. In addition, the analysis of early embryonic promoters and apoptotic genes would provide tools that confer dominant early-embryonic lethality during mass-rearing. Here we report the identification of several genes involved in these systems through whole transcriptome analysis of female accessory glands (FAGs) and spermathecae, as well as male testes. Indeed, analysis of differentially expressed genes in these tissues revealed higher metabolic activity in testes than in FAGs/ spermathecae. Furthermore, at least five olfactory-related genes were shown to be differentially expressed in the female and male reproductive systems analyzed. Finally, the expression profile of the embryonic serendipity-a locus and the pre-apoptotic head involution defective gene were analyzed during embryonic developmental stages. Conclusions: Several years of molecular studies on the olive fly can now be combined with new information from whole transcriptome analyses and lead to a deep understanding of the biology of this notorious insect pest. This is a prerequisite for the development of novel embryonic lethality female sexing strains for successful SIT efforts which, combined with improved mass-reared conditions, give new hope for efficient SIT applications for the olive fly
    corecore