544 research outputs found

    Electron transfer via helical oligopeptide to laccase including chiral schiff base copper mediators

    Get PDF
    The oxygen reduction efficiency of a laccase-modified electrode was found to depend on the chirality of the oligopeptide linker used to bind the enzyme to the surface. At the same time, the electron transfer between the cathode electrode and the enzyme is improved by using a copper(II) complex with amino-acid derivative Schiff base ligand with/without azobenzene moiety as a mediator. The increased electrochemical current under both O2 and N2 proves that both the mediators are active towards the enzyme

    Correlation between Ferromagnetic Layer Easy Axis and the Tilt Angle of Self Assembled Chiral Molecules

    Get PDF
    The spin-spin interactions between chiral molecules and ferromagnetic metals were found to be strongly affected by the chiral induced spin selectivity effect. Previous works unraveled two complementary phenomena: magnetization reorientation of ferromagnetic thin film upon adsorption of chiral molecules and different interaction rate of opposite enantiomers with a magnetic substrate. These phenomena were all observed when the easy axis of the ferromagnet was out of plane. In this work, the effects of the ferromagnetic easy axis direction, on both the chiral molecular monolayer tilt angle and the magnetization reorientation of the magnetic substrate, are studied using magnetic force microscopy. We have also studied the effect of an applied external magnetic field during the adsorption process. Our results show a clear correlation between the ferromagnetic layer easy axis direction and the tilt angle of the bonded molecules. This tilt angle was found to be larger for an in plane easy axis as compared to an out of plane easy axis. Adsorption under external magnetic field shows that magnetization reorientation occurs also after the adsorption event. These findings show that the interaction between chiral molecules and ferromagnetic layers stabilizes the magnetic reorientation, even after the adsorption, and strongly depends on the anisotropy of the magnetic substrate. This unique behavior is important for developing enantiomer separation techniques using magnetic substrates

    U-Pb zircon SHRIMP data from the Cana Brava layered complex: new constraints for the mafic-ultramafic intrusions of Northern Goiás, Brazil

    Get PDF
    The Cana Brava Complex is the northernmost and less-known layered intrusion of a discontinuous belt of mafic-ultramafic massifs within the Brasilia Belt, which also comprises the Niquelândia and Barro Alto complexes. Available geochronological determination by means of different systematics (K/Ar, Ar/Ar, Rb/Sr, Sm/Nd and U/Pb) provide a range of possible ages (time span from 3.9 Ga to 450 Ma), hence a precise and statistically reliable age for the Cana Brava Complex is still lacking. Also, preliminary isotopic and geochemical data of the Cana Brava Complex suggest a significant crustal contamination, which could have affected bulk-rock Sr and Nd systematics resulting in meaningless age determinations. In this paper, we present new U-Pb SHRIMP zircon analyses from four samples of different units of the Cana Brava Complex which suggest that the intrusion occurred during the Neoproterozoic, between 800 and 780 Ma, i.e. at the same age of Niquelândia. Discordant older 206Pb/238U ages are provided by inherited zircons, and match the age of the metamorphism of the encasing Palmeirópolis Sequence

    A New Biocomposite Material Based on Wheat Waste and Suitable for 3D Printing Applications

    Get PDF
    Biopolymers, such as poly(lactic) acid (PLA), which is obtained through green synthesis pathways from renewable resources, has attracted considerable interest in recent years because of the increasing need to reduce petroleum-based plastic pollution and bringing their prices comparable with conventional thermoplastic commodities’ price (e.g., polyethylene, polypropylene, and polystyrene). The present work investigates the employment of 10% wt of natural materials, deriving from wheat milling process, as biofiller of PLA to develop a biocomposite filament suitable for 3D-printing technique. The inclusion of a cost-free natural material leads to a strong reduction of the whole material cost. Implementing this new class of composite material to additive manufacturing technique allows to dramatically reduce the environmental impact of 3D printed products

    Comparing the Cana Brava and Niquelândia complexes: large mafic-ultramafic intrusions in the lower crust and contamination processes

    Get PDF
    Mafic-ultramafic complexes offer a unique opportunity to study how intrusions of mantlederived melts growth into the deep crust and interact with the country rocks. The Cana Brava and Niquelândia complexes are two mafic-ultramafic bodies which outcrop within the Brasilia Belt (Goias, central Brazil) and that intruded the metavolcanicmetasedimentary sequences of Palmeiropolis and Indaianopolis during a Neoproterozoic continental rifting. The two complexes are parts, together with the Barro Alto complex, of a ~350 km NNE-trend belt of layered bodies which were exhumed during the Gondwana formation. New field, geochemical and isotopic data give new constraints on the model of growth of these complexes and the interactions between parent melts and the lower crust. Field evidences suggest that the complexes grow via multiple-melt intrusions under hyper- to subsolidus shear conditions. During the complex growth, the upper metavolcanic-metasedimentary sequence was delaminated and xenoliths were incorporated and deformed within the crystal mush. The increase of the 87Sr/86Sr(790) along the complex stratigraphy, coupled with a decrease of the εNd(790), provides evidences of strong crustal contamination by the embedded xenoliths. The enrichment in most incompatible elements (e.g. K, Ba and LREE) and hydrous phases (biotite and amphibole) in rocks containing more xenoliths supports also the crustal contamination. The almost linear trend of isotopic contamination suggests that this process involved all the magma colum, similarly to AFC. However, the increase abundance of incompatible elements and H2O contents toward xenoliths-rich bands provide for a local effect of contamination

    Spin-induced asymmetry reaction - The formation of asymmetric carbon by electropolymerization

    Get PDF
    We describe the spin polarization–induced chirogenic electropolymerization of achiral 2-vinylpyridine, which forms a layer of enantioenhanced isotactic polymer on the electrode. The product formed is enantioenriched in asymmetric carbon polymer. To confirm the chirality of the polymer film formed on the electrode, we also measured its electron spin polarization properties as a function of its thickness. Two methods were used: First, spin polarization was measured by applying magnetic contact atomic force microscopy, and second, magnetoresistance was assessed in a sandwich-like four-point contact structure. We observed high spin-selective electron transmission, even for a layer thickness of 120 nm. A correlation exists between the change in the circular dichroism signal and the change in the spin polarization, as a function of thickness. The spin-filtering efficiency increases with temperature

    Highly Efficient and Tunable Filtering of Electrons' Spin by Supramolecular Chirality of Nanofiber-Based Materials

    Get PDF
    Organic semiconductors and organic–inorganic hybrids are promising materials for spintronic-based memory devices. Recently, an alternative route to organic spintronic based on chiral-induced spin selectivity (CISS) is suggested. In the CISS effect, the chirality of the molecular system itself acts as a spin filter, thus avoiding the use of magnets for spin injection. Here, spin filtering in excess of 85% in helical π-conjugated materials based on supramolecular nanofibers at room temperature is reported. The high spin-filtering efficiency can even be observed in nanofibers assembled from mixtures of chiral and achiral molecules through chiral amplification effect. Furthermore and most excitingly, it is shown that both “up” and “down” orientations of filtered spins can be obtained in a single enantiopure system via the temperature-dependent helicity (P and M) inversion of supramolecular nanofibers. The findings showcase that materials based on helical noncovalently assembled systems are modular platforms with an emerging structure–property relationship for spintronic applications

    Helicity Control in the Aggregation of Achiral Squaraine Dyes in Solution and Thin Films

    Get PDF
    Squaraine dyes are well known for their strong absorption in the visible regime. Reports on chiral squaraine dyes are, however, scarce. To address this gap, we here report two novel chiral squaraine dyes and their achiral counterparts. The presented dyes are aggregated in solution and in thin films. A detailed chiroptical study shows that thin films formed by co-assembling the chiral dye with its achiral counterpart exhibit exceptional photophysical properties. The circular dichroism (CD) of the co-assembled structures reaches a maximum when just 25 % of the chiral dye are present in the mixture. The solid structures with the highest relative CD effect are achieved when the chiral dye is used solely as a director, rather than the structural component. The chiroptical data are further supported by selected spin-filtering measurements using mc-AFM. These findings provide a promising platform for investigating the relationship between the dissymmetry of a supramolecular structure and emerging material properties rather than a comparison between a chiral molecular structure and an achiral counterpart
    • …
    corecore