110 research outputs found
Interleukin-1 blockade in recently decompensated systolic heart failure: study design of the recently decompensated heart failure anakinra response trial (RED-HART)
Heart Failure (HF) is a clinical syndrome characterized by
dyspnea, fatigue, and poor exercise capacity due to impaired cardiac
function. The incidence of HF is increasing and represents the leading
cause of hospitalization in the United States among patients > 65 years
of age. Neurohormonal blockade has proven to reduce morbidity
and mortality; however the persistent toll of HF demonstrates the
urgent need to continue to develop novel drugs that target other
pathophysiological paradigms. The presence of inflammation in
cardiovascular disease has been well-established and interleukin-1
(IL-1), the prototypical proinflammatory agent, has been shown in
preclinical animal models to induce cardiac dysfunction. The current
study will investigate the role of IL-1 as an inflammatory mediator of
HF progression and investigate whether IL-1 blockade with anakinra,
recombinant human IL-1 receptor antagonist, improves aerobic
exercise performance in patients with recently decompensated
systolic HF. This study will be composed of 3 treatment arms (20
patients each): 1) anakinra 100mg daily for 12 weeks; 2) anakinra
100mg daily for 2 weeks followed by placebo for 10 weeks; or 3)
placebo for 12 weeks. All patients will be followed for at least 24
weeks. The co-primary endpoints will be placebo-corrected interval
changes in peak oxygen consumption (VO2) and ventilatory efficiency
(VE/VCO2 slope) measured by Cardiopulmonary Exercise Testing
(CPX) after 2 weeks of anakinra treatment. Secondary endpoints will
include interval changes in 1) CPX variables at 4, 12 and 24 weeks;
2) echocardiographic measures of cardiac dimension/function; 3)
quality of life assessments; 4) inflammatory biomarkers; and 5) clinical
outcome including days alive outside of the hospital and survival free
of re-hospitalization for HF. The RED-HART study will be the first
study to address the potential benefits of IL-1 blockade on aerobic
exercise performance in patients with recently decompensated HF
Low NT-proBNP levels in overweight and obese patients do not rule out a diagnosis of heart failure with preserved ejection fraction
Background Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome that presents clinicians with a diagnostic challenge. The use of natriuretic peptides to exclude a diagnosis of HFpEF has been proposed. We sought to compare HFpEF patients with N-terminal pro-brain natriuretic peptide (NT-proBNP) level above and below the proposed cut-off. Methods Stable patients (n = 30) with left ventricular (LV) ejection fraction ≥ 50% were eligible if they had a diagnosis of HF according to the European Society of Cardiology diagnostic criteria. Characteristics of patients with NT-proBNP below (≤125 pg/mL) and above (\u3e125 pg/mL) the diagnostic criterion were compared. Results There were 19 (66%) women with median age 54 years. Half were African American (16, 53%), and most were obese. There were no significant differences in clinical characteristics or medication use between groups. LV end-diastolic volume index was greater in high NT-proBNP patients (P = 0.03). Left atrial volume index, E/e\u27 ratio, and E/e\u27 ratio at peak exercise were not significantly different between NT-proBNP groups. Peak oxygen consumption (VO2), VO2 at ventilatory threshold, and ventilatory efficiency measures were impaired in all patients and were not significantly different between high and low NT-proBNP patients. Conclusions NT-proBNP was below the proposed diagnostic cut-off point of 125 pg/mL in half of this obese study cohort. Cardiac diastolic dysfunction and cardiorespiratory fitness were not significantly different between high and low NT-proBNP patients. These data indicate that excluding the diagnosis of HFpEF based solely on NT-proBNP levels should be discouraged
Interleukin-1 blockade in heart failure with preserved ejection fraction: rationale and design of the Diastolic Heart Failure Anakinra Response Trial 2 (D-HART2)
Heart failure with preserved ejection fraction (HFpEF) now accounts for the majority of con-firmed HF cases in the United States. However, there are no highly effective evidence-basedtreatments currently available for these patients. Inflammation correlates positively withadverse outcomes in HF patients. Interleukin (IL)-1, a prototypical inflammatory cytokine, hasbeen implicated as a driver of diastolic dysfunction in preclinical animal models and a pilot clini-cal trial. The Diastolic Heart Failure Anakinra Response Trial 2 (D-HART2) is a phase 2, 2:1 ran-domized, double-blind, placebo-controlled clinical trial that will test the hypothesis that IL-1blockade with anakinra (recombinant human IL-1 receptor antagonist) improves (1) cardiorespi-ratory fitness, (2) objective evidence of diastolic dysfunction, and (3) elevated inflammation inpatients with HFpEF (http://www.ClinicalTrials.gov NCT02173548). The co–primary endpointswill be placebo-corrected interval changes in peak oxygen consumption and ventilatory effi-ciency at week 12. In addition, secondary and exploratory analyses will investigate the effectsof IL-1 blockade on cardiac structure and function, systemic inflammation, endothelial function,quality of life, body composition, nutritional status, and clinical outcomes. The D-HART2 clinicaltrial will add to the growing body of evidence on the role of inflammation in cardiovascular dis-ease, specifically focusing on patients with HFpEF
Metabolic Modulation Predicts Heart Failure Tests Performance
The metabolic changes that accompany changes in Cardiopulmonary testing (CPET) and heart failure biomarkers (HFbio) are not well known. We undertook metabolomic and lipidomic phenotyping of a cohort of heart failure (HF) patients and utilized Multiple Regression Analysis (MRA) to identify associations to CPET and HFBio test performance (peak oxygen consumption (Peak VO2), oxygen uptake efficiency slope (OUES), exercise duration, and minute ventilation-carbon dioxide production slope (VE/VCO2 slope), as well as the established HF biomarkers of inflammation C-reactive protein (CRP), beta-galactoside-binding protein (galectin-3), and N-terminal prohormone of brain natriuretic peptide (NT-proBNP)). A cohort of 49 patients with a left ventricular ejection fraction \u3c 50%, predominantly males African American, presenting a high frequency of diabetes, hyperlipidemia, and hypertension were used in the study. MRA revealed that metabolic models for VE/VCO2 and Peak VO2 were the most fitted models, and the highest predictors’ coefficients were from Acylcarnitine C18:2, palmitic acid, citric acid, asparagine, and 3-hydroxybutiric acid. Metabolic Pathway Analysis (MetPA) used predictors to identify the most relevant metabolic pathways associated to the study, aminoacyl-tRNA and amino acid biosynthesis, amino acid metabolism, nitrogen metabolism, pantothenate and CoA biosynthesis, sphingolipid and glycerolipid metabolism, fatty acid biosynthesis, glutathione metabolism, and pentose phosphate pathway (PPP). Metabolite Set Enrichment Analysis (MSEA) found associations of our findings with pre-existing biological knowledge from studies of human plasma metabolism as brain dysfunction and enzyme deficiencies associated with lactic acidosis. Our results indicate a profile of oxidative stress, lactic acidosis, and metabolic syndrome coupled with mitochondria dysfunction in patients with HF tests poor performance. The insights resulting from this study coincides with what has previously been discussed in existing literature thereby supporting the validity of our findings while at the same time characterizing the metabolic underpinning of CPET and HFBio
Molecular Predictors of Anakinra Treatment Success in Heart Failure Patients with Reduced Ejection Fraction
Background. Kineret (Anakinra) is an interleukin-1 antagonist that is under investigation for its novel clinical application treating patients that have heart failure with reduced (\u3c50%) ejection fraction (HFrEF). A prior study from our group indicated that Anakinra may restore heart function by addressing dysregulations in HFrEF metabolic pathways. Herein, we attempt to elicit Anakinra’s effects on both metabolome and lipidome.
Methods. Lipids and metabolites that had previously been quantified by mass spectrometry (MS) from patients (n=49) who had ≥2 mg/L of high-sensitivity C-reactive protein (hs-CRP) were mTIC normalized and transformed. We conducted a stepwise Linear Discriminant Analysis (r- LDA) to test Anakinra (2 and 12 weeks) vs placebo for separation from combined baseline. Metabolic pathway analysis was performed with Fisher’s exact test algorithm for detection of over-represented and enriched analytes. Univariate analysis (one tailed t-test p\u3c0.05) compared placebo and Anakinra after 12-weeks for effect(s). Metaboanalyst 4.0, JMP Pro 14.0, and a proprietary package in R (version 3.4.4) were the software for all analyses and data wrangling.
Results. Analytes such as acylcarnitines C10:0 and C16:0 and hsCRP showed significant improvements after 12 weeks of Anakinra, leading to improved mitochondrial function, reduced inflammation, and overall better health outcomes. Statistically significant (p\u3c0.05) pathways including the citrate cycle, cysteine and methionine metabolism, galactose metabolism among others were associated with treatment.
Conclusions. We were able to determine significant alterations to metabolomic and lipidomic concentrations after 12 weeks of Anakinra therapy. Our biochemical analyses verifies that Anakinra did improve heart function within our HFrEF pilot cohort.https://scholarscompass.vcu.edu/gradposters/1081/thumbnail.jp
Role of Interleukin-1 in Radiation-Induced Cardiomyopathy
Thoracic X-ray therapy (XRT), used in cancer treatment, is associated with increased risk of heart failure. XRT-mediated injury to the heart induces an inflammatory response leading to cardiomyopathy. The aim of this study was to determine the role of interleukin (IL)-1 in response to XRT injury to the heart and on the cardiomyopathy development in the mouse. Female mice with genetic deletion of the IL-1 receptor type I (IL-1R1 knockout mice [IL-1R1 KO]) and treatment with recombinant human IL-1 receptor antagonist anakinra, 10 mg/kg twice daily for 7 d, were used as independent approaches to determine the role of IL-1. Wild-type (wt) or IL-1R1 KO mice were treated with a single session of XRT (20 or 14 gray [Gy]). Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson’s trichrome was used to assess myocardial fibrosis and pericardial thickening. After 20 Gy, the contractile reserve was impaired in wt mice at d 3, and the LV ejection fraction (EF) was reduced after 4 months when compared with sham-XRT. IL-1R1 KO mice had preserved contractile reserve at 3 d and 4 months and LVEF at 4 months after XRT. Anakinra treatment for 1 d before and 7 d after XRT prevented the impairment in contractile reserve. A significant increase in LV end-diastolic pressure, associated with increased myocardial interstitial fibrosis and pericardial thickening, was observed in wt mice, as well as in IL-1R1 KO–or anakinra-treated mice. In conclusion, induction of IL-1 by XRT mediates the development of some, such as the contractile impairment, but not all aspects of the XRT-induced cardiomyopathy, such as myocardial fibrosis or pericardial thickening
Dietary Fat, Sugar Consumption, and Cardiorespiratory Fitness in Patients With Heart Failure With Preserved Ejection Fraction
Heart failure with preserved ejection fraction (HFpEF) is associated with obesity and, indirectly, with unhealthy diet. The role of dietary components in HFpEF is, however, largely unknown. In this study, the authors showed that in obese HFpEF patients, consumption of unsaturated fatty acids (UFA), was associated with better cardiorespiratory fitness, and UFA consumption correlated with better diastolic function and with greater fat-free mass. Similarly, mice fed with a high-fat diet rich in UFA and low in sugars had preserved myocardial function and reduced weight gain. Randomized clinical trials increasing dietary UFA consumption and reducing sugar consumption are warranted to confirm and expand our findings
- …