22 research outputs found

    An Isolated Stellar-Mass Black Hole Detected Through Astrometric Microlensing

    Get PDF
    We report the first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH). We used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t_E ~ 270 days), high-magnification microlensing event MOA-2011-BLG-191/OGLE-2011-BLG-0462, in the direction of the Galactic bulge. HST imaging, conducted at eight epochs over an interval of six years, reveals a clear relativistic astrometric deflection of the background star's apparent position. Ground-based photometry shows a parallactic signature of the effect of the Earth's motion on the microlensing light curve. Combining the HST astrometry with the ground-based light curve and the derived parallax, we obtain a lens mass of 7.1 +/- 1.3 M_Sun and a distance of 1.58 +/- 0.18 kpc. We show that the lens emits no detectable light, which, along with having a mass higher than is possible for a white dwarf or neutron star, confirms its BH nature. Our analysis also provides an absolute proper motion for the BH. The proper motion is offset from the mean motion of Galactic-disk stars at similar distances by an amount corresponding to a transverse space velocity of ~45 km/s, suggesting that the BH received a modest natal 'kick' from its supernova explosion. Previous mass determinations for stellar-mass BHs have come from radial-velocity measurements of Galactic X-ray binaries, and from gravitational radiation emitted by merging BHs in binary systems in external galaxies. Our mass measurement is the first ever for an isolated stellar-mass BH using any technique

    Can GDP Measurement Be Further Improved? Data Revision and Reconciliation

    No full text
    Recent years have seen many attempts to combine expenditure-side estimates of U.S. real output (GDE) growth with income-side estimates (GDI) to improve estimates of real GDP growth. We show how to incorporate information from multiple releases of noisy data to provide more precise estimates while avoiding some of the identifying assumptions required in earlier work. This relies on a new insight: using multiple data releases allows us to distinguish news and noise measurement errors in situations where a single vintage does not. We find that (a) the data prefer averaging across multiple releases instead of discarding early releases in favor of later ones, and (b) that initial estimates of GDI are quite informative. Our new measure, GDP++, undergoes smaller revisions and tracks expenditure measures of GDP growth more closely than either the simple average of the expenditure and income measures published by the BEA or the GDP growth measure of Aruoba et al. published by the Federal Reserve Bank of Philadelphia

    Some sensitivities of a coupled ocean-atmosphere GCM

    No full text
    A coupled ocean-atmosphere GCM is being developed for use in seasonal forecasting. As part of the development work, a number of experiments have been made to explore some of the sensitivities of the coupled model system. The overall heat balance of the tropics is found to be very sensitive to convective cloud cover. Adjusting the cloud parameterization to produce stable behaviour of the coupled model also leads to better agreement between model radiative fluxes and satellite data. A further sensitivity is seen to changes in low-level marine stratus, which is under-represented in the initial model experiments. An increase in this cloud in the coupled model produces a small improvement in both the global mean state and the phase of the east Pacific annual cycle. The computational expense of investigating such small changes is emphasized. An indication of model sensitivity to surface albedo is also presented. The sensitivity of the coupled GCM to initial conditions is investigated. The model is very sensitive, with tiny perturbations able to determine El Nino or non-El Nino conditions just six months later. This large sensitivity may be related to the relatively weak amplitude of the model ENSO cycle. (orig.)SIGLEAvailable from TIB Hannover: RR 1347(128) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Surface Ocean CO2 Atlas (SOCAT) V6

    No full text
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (>100 contributors). SOCAT version 6 has 23.4 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations from 1957 to 2017 for the global oceans and coastal seas. Calibrated sensor data are also available. Automation allows annual, public releases. SOCAT data is discoverable, accessible and citable. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT represents a milestone in biogeochemical and climate research and in informing policy. 424 datasets Version 5: https://doi.pangaea.de/10.1594/PANGAEA.877863 Version 4: https://doi.pangaea.de/10.1594/PANGAEA.866856 Version 3: https://doi.pangaea.de/10.1594/PANGAEA.849770 Version 2: https://doi.org/10.1594/PANGAEA.81515

    Additional file 5 of Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    No full text
    Additional file 5: Table S4. Frequency of lipid-related publications for the PoPS+ prioritized genes

    Additional file 10 of Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    No full text
    Additional file 10: Table S7. DESE phenotype-tissue association results using both GTEx gene-level and transcript-level selective expression
    corecore