4 research outputs found

    Characterization of Antibodies against Receptor Activity-Modifying Protein 1 (RAMP1): A Cautionary Tale

    Full text link
    Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools. We profiled antibodies for immunodetection of RAMP1 using Western blotting, immunocytochemistry and immunohistochemistry, including using RAMP1 knockout mouse tissue. Most antibodies could detect RAMP1 in Western blotting and immunocytochemistry using transfected cells. Two antibodies (844, ab256575) could detect a RAMP1-like band in Western blots of rodent brain but not RAMP1 knockout mice. However, cross-reactivity with other proteins was evident for all antibodies. This cross-reactivity prevented clear conclusions about RAMP1 anatomical localization, as each antibody detected a distinct pattern of immunoreactivity in rodent brain. We cannot confidently attribute immunoreactivity produced by RAMP1 antibodies (including 844) to the presence of RAMP1 protein in immunohistochemical applications in brain tissue. RAMP1 expression in brain and other tissues therefore needs to be revisited using RAMP1 antibodies that have been comprehensively validated using multiple strategies to establish multiple lines of convincing evidence. As RAMP1 is important for other GPCR/ligand pairings, our results have broader significance beyond the CGRP field

    Calcitonin receptor antibody validation and expression in the rodent brain

    Full text link
    Background and aim Therapeutics that reduce calcitonin gene-related peptide activity are effective migraine treatments. However, gaps remain in our understanding of the molecular mechanisms that link calcitonin gene-related peptide to migraine. The amylin 1 receptor responds potently to calcitonin gene-related peptide, and to the related peptide amylin, but its role in relation to either peptide or to migraine is unclear. We sought to better understand the expression of the amylin 1 receptor protein subunit, the calcitonin receptor, in the rodent brain. Methods We profiled three antibodies for immunodetection of calcitonin receptor, using immunocytochemistry, western blotting, and calcitonin receptor conditional knockout mouse tissue. Selected migraine-relevant rat brain regions were then examined for calcitonin receptor-like immunoreactivity. Results All three antibodies detected calcitonin receptor protein but only one (188/10) produced robust immunostaining in rodent brain, under the conditions used. Calcitonin receptor-like immunoreactivity was apparent in the rat brainstem and midbrain including the locus coeruleus, periaqueductal grey and spinal trigeminal nucleus. Conclusions Anti-calcitonin receptor antibodies require comprehensive profiling to ensure confidence in the detection of calcitonin receptor. Using a validated antibody, calcitonin receptor-like immunoreactivity was detected in several brain regions relevant to migraine. Further research is needed to understand the functional consequences of calcitonin receptor expression for calcitonin gene-related peptide or amylin physiology and pathophysiology

    Novel Fluorescently Labeled PACAP and VIP Highlight Differences between Peptide Internalization and Receptor Pharmacology

    No full text
    The related peptides pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) have diverse biological functions in peripheral tissues and the central nervous system. Therefore, these peptides and their three receptors represent potential drug targets for several conditions, including neurological and pain-related disorders. However, very little is known about how these peptides regulate their receptors through processes such as internalization. Therefore, we developed tools to study receptor regulation through the synthesis of fluorescently labeled analogues of PACAP-38, PACAP-27, and VIP using copper-mediated 1,3-dipolar cycloaddition of the Cy5 fluorophore. The functionality of Cy5-labeled peptides at their receptors was confirmed in cAMP accumulation assays. Internalization of the Cy5-labeled peptides was then examined and quantified at two distinct PAC1 receptor splice variants, VPAC1 and VPAC2 receptors in transfected cells. All labeled peptides were functional, exhibiting comparable cAMP pharmacology to their unlabeled counterparts and underwent internalization in a time-dependent manner. Temporal differences in the internalization profiles were observed between Cy5-labeled peptides at the PAC1n, PAC1s, VPAC1, and VPAC2 receptors. Interestingly, the pattern of Cy5-labeled peptide activity differed for cAMP accumulation and internalization, indicating that these peptides differentially stimulate cAMP accumulation and internalization and therefore display biased agonism. This novel insight into PACAP-responsive receptor signaling and internalization may provide a unique avenue for future therapeutic development. The fluorescently labeled PACAP and VIP peptides described herein, which we validated as tools to study receptor internalization, will have utility across a broad range of applications and provide greater insight into this receptor family

    Characterization of Antibodies against Receptor Activity-Modifying Protein 1 (RAMP1): A Cautionary Tale

    No full text
    Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools. We profiled antibodies for immunodetection of RAMP1 using Western blotting, immunocytochemistry and immunohistochemistry, including using RAMP1 knockout mouse tissue. Most antibodies could detect RAMP1 in Western blotting and immunocytochemistry using transfected cells. Two antibodies (844, ab256575) could detect a RAMP1-like band in Western blots of rodent brain but not RAMP1 knockout mice. However, cross-reactivity with other proteins was evident for all antibodies. This cross-reactivity prevented clear conclusions about RAMP1 anatomical localization, as each antibody detected a distinct pattern of immunoreactivity in rodent brain. We cannot confidently attribute immunoreactivity produced by RAMP1 antibodies (including 844) to the presence of RAMP1 protein in immunohistochemical applications in brain tissue. RAMP1 expression in brain and other tissues therefore needs to be revisited using RAMP1 antibodies that have been comprehensively validated using multiple strategies to establish multiple lines of convincing evidence. As RAMP1 is important for other GPCR/ligand pairings, our results have broader significance beyond the CGRP field
    corecore