4,013 research outputs found

    Kaehler Manifolds of Quasi-Constant Holomorphic Sectional Curvatures

    Full text link
    The Kaehler manifolds of quasi-constant holomorphic sectional curvatures are introduced as Kaehler manifolds with complex distribution of codimension two, whose holomorphic sectional curvature only depends on the corresponding point and the geometric angle, associated with the section. A curvature identity characterizing such manifolds is found. The biconformal group of transformations whose elements transform Kaehler metrics into Kaehler ones is introduced and biconformal tensor invariants are obtained. This makes it possible to classify the manifolds under consideration locally. The class of locally biconformal flat Kaehler metrics is shown to be exactly the class of Kaehler metrics whose potential function is only a function of the distance from the origin in complex Euclidean space. Finally we show that any rotational even dimensional hypersurface carries locally a natural Kaehler structure, which is of quasi-constant holomorphic sectional curvatures.Comment: 36 page

    Evidence of non-thermal X-ray emission from radio lobes of Cygnus A

    Full text link
    Using deep Chandra ACIS observation data for Cygnus A, we report evidence of non-thermal X-ray emission from radio lobes surrounded by a rich intra-cluster medium (ICM). The diffuse X-ray emission, which are associated with the eastern and western radio lobes, were observed in a 0.7--7 keV Chandra$ ACIS image. The lobe spectra are reproduced with not only a single-temperature Mekal model, such as that of the surrounding ICM component, but also an additional power-law (PL) model. The X-ray flux densities of PL components for the eastern and western lobes at 1 keV are derived as 77.7^{+28.9}_{-31.9} nJy and 52.4^{+42.9}_{-42.4} nJy, respectively, and the photon indices are 1.69^{+0.07}_{-0.13} and 1.84^{+2.90}_{-0.12}, respectively. The non-thermal component is considered to be produced via the inverse Compton (IC) process, as is often seen in the X-ray emission from radio lobes. From a re-analysis of radio observation data, the multiwavelength spectra strongly suggest that the seed photon source of the IC X-rays includes both cosmic microwave background radiation and synchrotron radiation from the lobes. The derived parameters indicate significant dominance of the electron energy density over the magnetic field energy density in the Cygnus A lobes under the rich ICM environment.Comment: 8 pages, 5 figures, accepted for publication in Ap

    Nonlinear Evolution of Cosmic Magnetic Fields and Cosmic Microwave Background Anisotropies

    Get PDF
    In this work we investigate the effects of the primordial magnetic fields on cosmic microwave background anisotropies (CMB). Based on cosmological magnetohydrodynamic (MHD) simulations we calculate the CMB anisotropy spectra and polarization induced by fluid fluctuations (Alfv\'en modes) generated by primordial magnetic fields. The strongest effect on the CMB spectra comes from the transition epoch from a turbulent regime to a viscous regime. The balance between magnetic and kinetic energy until the onset of the viscous regime provides a one to one relation between the comoving coherence length LL and the comoving magnetic field strength BB, such as L30(B/109G)3pcL \sim 30 (B/10^{-9}{\rm G})^3 \rm pc. The resulting CMB temperature and polarization anisotropies are somewhat different from the ones previously obtained by using linear perturbation theory. Our calculation gives a constraint on the magnetic field strength in the intermediate scale of CMB observations. Upper limits are set by WMAP and BOOMERANG results for comoving magnetic field strength of B<28nGB < 28 \rm nG with a comoving coherence length of L>0.7MpcL > 0.7 \rm Mpc for the most extreme case, or B0.8MpcB 0.8 \rm Mpc for the most conservative case.Comment: accepted for publication in Phys. Rev.

    On the Thermal Instability in a Contracting Gas Cloud and Formation of a Bound Cluster

    Get PDF
    We perform linear analysis of thermal instability in a contracting large cloud filled with warm HI gas and investigate the effect of metallicity and radiation flux. When the cloud reaches critical density n_f, the cloud fragments into cool, dense condensations because of thermal instability. For a lower metallicity gas cloud, the value of n_f is high. Collision between condensations will produce self-gravitating clumps and stars thereafter. From the result of calculation, we suggest that high star formation efficiency and bound cluster formation are realized in low-metallicity and/or strong-radiation environments.Comment: 7 pages, including 7 figures, LaTeX2e(emulateapj5.sty) To appear in ApJ, Jun 10, 200

    Uniqueness of static decompositions

    Full text link
    We classify static manifolds which admit more than one static decomposition whenever a condition on the curvature is fullfilled. For this, we take a standard static vector field and analyze its associated one parameter family of projections onto the base. We show that the base itself is a static manifold and the warping function satisfies severe restrictions, leading us to our classification results. Moreover, we show that certain condition on the lightlike sectional curvature ensures the uniqueness of static decomposition for Lorentzian manifolds.Comment: 14 page

    COMPARATIVE STUDIES ABOUT KINEMATICS OF MAXIMAL SPRINT RUNNING AND RUNNING UP IN HORSE VAULTING

    Get PDF
    INTRODUCTION: Effective running up is known as an important factor for successful completion of horse vaulting. Some examined the relationship of mechanical parameters of pre-flight and/or post-flight with gymnasts’ performance. However, running up kinematics and its running velocity have been neglected. So the purposes of present study were 1) to compare the kinematics of running up during horse vaulting with that of sprint running, and 2) to investigated the relationships of running velocities and scores of horse vaulting
    corecore