58 research outputs found

    Clinical Practice Guideline for Vitamin D

    Get PDF
    Vitamin D and its metabolites have clinical significance because they play a critical function in calcium homeostasis and bone metabolism. Although not all of the pathologic mechanisms have been adequately described, vitamin D insufficiency and deficiency, as measured by low levels of 25-OH vitamin D, are associated with a variety of clinical conditions including osteoporosis, falls and fractures in the elderly, decreased immune function, bone pain, and possibly colon cancer and cardiovascular health.2 Apart from inadequate dietary intake, patients may present with low levels of vitamin D if they receive inadequate sunlight. The astronaut population is potentially vulnerable to low levels of vitamin D for several reasons. Firstly, they may train for long periods in Star City, Russia, which by virtue of its northern latitude receives less sunlight in winter months. Secondly, astronauts are deprived of sunlight while aboard the International Space Station (ISS). In addition, ISS crew members are exposed to microgravity for prolonged durations and are likely to develop low bone mineral density despite the use of countermeasures. Therefore, closely monitoring and maintaining adequate vitamin D levels is important for the astronaut corps

    NASA's First Atrial Fibrillation Case - Deke Slayton

    Get PDF
    Concerns about heart dysrhythmia have been present since the earliest days of the US manned space program. While information about an astronaut's health is general kept private, one of the original seven American astronaut's health status was played out in a very public forum. Donald "Deke" Slayton was removed from the second manned space flight when it was discovered he had idiopathic atrial fibrillation. Referencing the original medical documents, details of how this was discovered and managed from the medical perspective will be reviewed. This is NASA's first heart dysrhythmia case in an astronaut and it proves quite interesting when placed in historic perspective

    Bone Loss in Astronauts from the Flight Surgeon's Perspective

    Get PDF
    No abstract availabl

    VIIP 2017 Clinical Update

    Get PDF
    No abstract availabl

    NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    Get PDF
    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space

    NASA's Current Evidence and Hypothesis for the Visual Impairment and Intracranial Pressure Risk

    Get PDF
    While 40 years of human spaceflight exploration has reported visual decrement to a certain extent in a subgroup of astronauts, recent data suggests that there is indeed a subset of crewmembers that experience refraction changes (hyperoptic shift), cotton wool spot formation, choroidal fold development, papilledema, optic nerve sheath distention and/or posterior globe flattening with varying degrees of severity and permanence. Pre and postflight ocular measures have identified a potential risk of permanent visual changes as a result of microgravity exposure, which has been defined as the Visual Impairment and Intracranial Pressure risk (VIIP). The combination of symptoms are referred to as the VIIP syndrome. It is thought that the ocular structural and optic nerve changes are caused by events precipitated by the cephalad fluid shift crewmembers experience during long-duration spaceflight. Three important systems, ocular, cardiovascular, and central nervous, seem to be involved in the development of symptoms, but the etiology is still under speculation. It is believed that some crewmembers are more susceptible to these changes due to genetic/anatomical predisposition or lifestyle (fitness) related factors. Future research will focus on determining the etiology of the VIIP syndrome and development of mechanisms to mitigate the spaceflight risk
    corecore