16 research outputs found

    A Comparative Study Between a Micromechanical Cantilever Resonator and MEMS-based Passives for Band-pass Filtering Application

    Full text link
    Over the past few years, significant growth has been observed in using MEMS based passive components in the RF microelectronics domain, especially in transceiver components. This is due to some excellent properties of the MEMS devices like low loss, excellent isolation etc. in the microwave frequency domain where the on-chip passives normally tend to become leakier and degrades the transceiver performance. This paper presents a comparative analysis between MEMS-resonator based and MEMS-passives based band-pass filter configurations for RF applications, along with their design, simulation, fabrication and characterization. The filters were designed to have a center frequency of 455 kHz, meant for use as the intermediate frequency (IF) filter in superheterodyne receivers. The filter structures have been fabricated in PolyMUMPs process, a three-polysilicon layer surface micromachining process.Comment: 6 pages, 15 figure

    Analysis of the Effect of Number of Knots in a Trajectory on Motion Characteristics of a 3R Planar Manipulator

    Get PDF
    The paper presents a method of trajectory planning and motion characteristics of a robotic manipulator. Main objective is to study the motion characteristics of a manipulator and to explore the scope of minimization of jerk. 8th order polynomial is considered for the trajectory design and the effect of number of intermediate knots between start and final positions of a 3R manipulator within the workspace is studied. Displacements, velocities, accelerations and jerk of end-effectors on a linear path are presented. The simulation for motion of the manipulator is done with the help of AutoLISP on AutoCAD platform

    Parasitic Capacitances on Scaling Lateral Nanowire

    Get PDF
    The gate-all-around silicon nanowire transistor (GAA-NW) has manifested itself as one of the most fortunate candidates for advanced node integrated circuits (ICs). As the GAA transistor has stronger gate control, better scalability, as well as improved transport properties, the device has been considered as a potential alternative for scaling beyond FinFET. In recent publications, the basic feature and scalability of nanowire have been widely explored primarily focusing on intrinsic device characteristics. Although the GAA-NW has superior gate control compared to other architectures, the device is surrounded by huge vertical gate metal line and S/D contact metal lines. The presence of this vast metal line forms a strong parasitic capacitance. While scaling down sub-7 nm node dimensions, these capacitances influence strongly on the overall device performances. In this chapter, we have discussed the effects of various parasitic capacitances on scaling the device dimensions as well as their performances at high-frequency operations. TCAD-based compact model was used to study the impacts of scaling GAA-NW’s dimensions on power performance and area gain perspective (PPA)

    IPMC Based Flexible Platform: A Boon to the Alternative Energy Solution

    Get PDF
    The ameliorating urge for energy in consonance with the descending environment and attenuation of natural resources leads to the development of alternate energy storage. Realistically, flexible, portable, and lightweight energy storage devices have immense popularity for accessible transportation. In this context, this chapter analyses a possible solution to the problems described aforesaid on IPMC (Ionic Polymer Metal Composite) membranes. Also, this chapter includes porosity induced electrolyte polymer membrane by MCP of Nafion enhances electrical harvesting attribution. The novel and transportable ocean kinetic energy converting platform by IPMC membrane was fabricated and applied for energy conversion. The etching and surface sanding advances the surface area of IPMC to escalate the gas generation rate as an electrolyser. The functionalised infiltrated Nafion nanocomposite membranes are fabricated and analysed for DMFC performance and methanol permeability. Perfluorosulfonic acid polymer electrolyte membranes gained more attention in the former epoch for vast applications in energy, chloro-alkali electrolytes, OER, and polymer electrolyte fuel cells. The direct methanol fuel cell is an excellent alternative to PEFC for managing liquid fuel and higher energy density at low operational temperatures. Nevertheless, polymer electrolyte membranes and direct methanol fuel cells are potential contenders for circulated power and transferable power applications; the substantial technical, scientific, and economic difficulties must be elucidated beforehand commercialisation

    Graphene and Its Nanocomposites Based Humidity Sensors: Recent Trends and Challenges

    Get PDF
    Humidity sensors are of utmost importance in certain areas of life, in processing industries, in fabrication laboratories and in agriculture. Precise evaluation of humidity percentage in air is the need of various applications. Graphene and its composites have shown great potential in performing as humidity sensors owing to enormous surface area, very low electrical noise, high electrical conductivity, mechanical and thermal stability and high room temperature mobility. There is no such extensive review on graphene-based devices for humidity sensing applications. This review extensively discusses graphene-based devices intended towards sensing humidity, starting from the methods of synthesizing graphene, its electronic and mechanical properties favoring sensing behavior and different types of sensing mechanisms. The review also studies the performance and recent trends in humidity sensor based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and various composite materials based on graphene such as graphene/polymer, graphene/metal oxide or graphene/metal. Discussions on the limitations and challenges of the graphene-based humidity sensors along with its future trends are made

    Spur reduction architecture for multiphase fractional PLLs

    No full text

    Hierarchical ZnO Nanorods With Tailored Surface Defects for Enhanced Acetone Sensing

    No full text
    corecore