89 research outputs found

    Origin of metals in old Milky Way halo stars based on GALAH and Gaia

    Get PDF
    © 2021 The Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab1982Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured by GALAH Data Release 3 with accurate astrometry from the Gaia EDR3, we have selected 100\sim 100 old main-sequence turn-off stars (ages 12\gtrsim 12 Gyrs) with kinematics compatible with the Milky Way stellar halo population in the Solar neighborhood. Detailed homogeneous elemental abundance estimates by GALAH DR3 are compared with supernova yield models of Pop~III (zero-metal) core-collapse supernovae (CCSNe), normal (non-zero-metal) CCSNe, and Type Ia supernovae (SN Ia) to examine which of the individual yields or their combinations best reproduce the observed elemental abundance patterns for each of the old halo stars ("OHS"). We find that the observed abundances in the OHS with [Fe/H]>1.5>-1.5 are best explained by contributions from both CCSNe and SN~Ia, where the fraction of SN~Ia among all the metal-enriching SNe is up to 10-20 % for stars with high [Mg/Fe] ratios and up to 20-27 % for stars with low [Mg/Fe] ratios, depending on the assumption about the relative fraction of near-Chandrasekhar-mass SNe Ia progenitors. The results suggest that, in the progenitor systems of the OHS with [Fe/H]>1.5>-1.5, \sim 50-60% of Fe mass originated from normal CCSNe at the earliest phases of the Milky Way formation. These results provide an insight into the birth environments of the oldest stars in the Galactic halo.Peer reviewedFinal Published versio

    Modulation of Mouse Coagulation Gene Transcription following Acute In Vivo Delivery of Synthetic Small Interfering RNAs Targeting HNF4α and C/EBPα

    Get PDF
    Hepatocyte nuclear factor 4α (HNF4α) and CCAAT/enhancer-binding protein α (C/EBPα) are important for the transcriptional control of coagulation factors. To determine in vivo the direct role of HNF4α and C/EBPα in control of genes encoding coagulation factors, a synthetic small interfering (si)RNA approach was used that enabled strong reduction of mouse hepatic HNF4α and C/EBPα under conditions that minimized target-related secondary effects. For both HNF4α and C/EBPα, intravenous injection of specific synthetic siRNAs (siHNF4α and siC/EBPα) resulted in more than 75% reduction in their liver transcript and protein levels 2 days post-injection. For siHNF4α, this coincided with marked and significantly reduced transcript levels of the coagulation genes Hrg, Proz, Serpina5, F11, F12, F13b, Serpinf2, F5, and F9 (in order of magnitude of effect) as compared to levels in control siRNA injected animals. Significant decreases in HNF4α target gene mRNA levels were also observed at 5 days post-siRNA injection, despite a limited level of HNF4α knockdown at this time point. Compared to HNF4α, C/EBPα knockdown had a modest impact on genes encoding coagulation factors. A strong reduction in C/EBPα transcript and protein levels resulted in significantly affected transcript levels of the control genes Pck1 and Fasn and a modest downregulation for coagulation genes Fba, Fbg and F5. F5 and F11 were the sole coagulation genes that were significantly affected upon prolonged (5 day) C/EBPα knockdown. We conclude that in the mouse, HNF4α has a direct and essential regulatory role for multiple hepatic coagulation genes, while a role for C/EBPα is more restricted. In addition, this study demonstrates that synthetic siRNA provides a simple and fast means for determining liver transcription factor involvement in vivo

    Glass-liquid transition in a less-stable metallic glass

    Get PDF
    A stable metallic glass, SMG, is often viewed as an amorphous alloy exhibiting a reversible glassliquid transition. Here we show experimentally that even in a less-stable metallic glass, LMG, which is prepared only by rapid melt quenching and promptly crystallized without glass transition at the ordinary heating rate, sufficiently rapid heating exposes the glassliquid transition by suppressing crystallization. The experimental glass transition Tg and crystallization Tx temperatures were plotted as a function of heating rate , for Pd42.5Ni7.5Cu30P20 of SMG and for Zr70Ni30 of LMG. Two extrapolated curves, Tg–log and Tx–log , intersect at a quite small , e.g., ~10–4 °C/min, for SMG, whereas their intersection occurs at a large , e.g., ~10 °C/min, for LMG. Such a large that is comparable to conventional heating rates makes it difficult to observe the reversible glass transition in LMG, and reflects low thermal stability of the glassy state
    corecore