10 research outputs found

    Quantification of sulcal emergence timing and its variability in early fetal life: Hemispheric asymmetry and sex difference

    Get PDF
    Human fetal brains show regionally different temporal patterns of sulcal emergence following a regular timeline, which may be associated with spatiotemporal patterns of gene expression among cortical regions. This study aims to quantify the timing of sulcal emergence and its temporal variability across typically developing fetuses by fitting a logistic curve to presence or absence of sulcus. We found that the sulcal emergence started from the central to the temporo-parieto-occipital lobes and frontal lobe, and the temporal variability of emergence in most of the sulci was similar between 1 and 2 weeks. Small variability (\u3c 1 week) was found in the left central and postcentral sulci and larger variability (\u3e2 weeks) was shown in the bilateral occipitotemporal and left superior temporal sulci. The temporal variability showed a positive correlation with the emergence timing that may be associated with differential contributions between genetic and environmental factors. Our statistical analysis revealed that the right superior temporal sulcus emerged earlier than the left. Female fetuses showed a trend of earlier sulcal emergence in the right superior temporal sulcus, lower temporal variability in the right intraparietal sulcus, and higher variability in the right precentral sulcus compared to male fetuses. Our quantitative and statistical approach quantified the temporal patterns of sulcal emergence in detail that can be a reference for assessing the normality of developing fetal gyrification

    Fetal cortical plate segmentation using fully convolutional networks with multiple plane aggregation

    Get PDF
    Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) developmen

    Optimal method for fetal brain age prediction using multiplanar slices from structural magnetic resonance imaging

    Get PDF
    The accurate prediction of fetal brain age using magnetic resonance imaging (MRI) may contribute to the identification of brain abnormalities and the risk of adverse developmental outcomes. This study aimed to propose a method for predicting fetal brain age using MRIs from 220 healthy fetuses between 15.9 and 38.7 weeks of gestational age (GA). We built a 2D single-channel convolutional neural network (CNN) with multiplanar MRI slices in different orthogonal planes without correction for interslice motion. In each fetus, multiple age predictions from different slices were generated, and the brain age was obtained using the mode that determined the most frequent value among the multiple predictions from the 2D single-channel CNN. We obtained a mean absolute error (MAE) of 0.125 weeks (0.875 days) between the GA and brain age across the fetuses. The use of multiplanar slices achieved significantly lower prediction error and its variance than the use of a single slice and a single MRI stack. Our 2D single-channel CNN with multiplanar slices yielded a significantly lower stack-wise MAE (0.304 weeks) than the 2D multi-channel (MAE = 0.979

    Long-term developmental outcome of children with a fetal diagnosis of isolated inferior vermian hypoplasia

    No full text
    OBJECTIVES: Isolated inferior vermian hypoplasia (iiVH) is one of the most common fetal cerebellar anomalies presenting for fetal neurological counselling with controversial postnatal neurodevelopmental outcome. In the present study, we characterised the long-term neurodevelopmental outcome of prenatally diagnosed iiVH at school age. DESIGN AND PATIENTS: We prospectively followed 20 children with fetal MRI diagnosis of iiVH including their postnatal MRI result and developmental outcome at school age (mean 6.1 years±1.9 years SD) using a comprehensive age-appropriate developmental testing battery, which encompassed cognitive, language, social and behavioural domains. Parental stress level and socioeconomic status were also evaluated. RESULTS: All children with postnatally confirmed iiVH had a normal neurodevelopmental outcome. A subgroup of children (2/20) who demonstrated cognitive delays and behavioural impairments had more extensive cerebellar malformation. Despite a normal developmental outcome, the parents of children with postnatally confirmed iiVH had higher parental stress compared with those parents whose children had normal postnatal MRI. CONCLUSIONS: Children with postnatally confirmed iiVH show age appropriate functioning at school age. Postnatal MRI is important to confirm the diagnosis of iiVH and to exclude associated anomalies that impact neurodevelopmental outcome. A diagnosis of iiVH is associated with persistent elevated parental stress despite normal developmental outcomes in these children suggesting the need for ongoing parental support

    Fetal Neurology Practice Survey: Current Practice and the Future Directions

    No full text
    BACKGROUND: Fetal neurology is a rapidly evolving field. Consultations aim to diagnose, prognosticate, and coordinate prenatal and perinatal management along with other specialists and counsel expectant parents. Practice parameters and guidelines are limited. METHODS: A 48-question online survey was administered to child neurologists. Questions targeted current care practices and perceived priorities for the field. RESULTS: Representatives from 43 institutions in the United States responded; 83% had prenatal diagnosis centers, and the majority performed on-site neuroimaging. The earliest gestational age for fetal magnetic resonance imaging was variable. Annual consultations ranged from \u3c20 to \u3e100 patients. Fewer than half (n = 17.40%) were subspecialty trained. Most respondents (n = 39.91%) were interested in participating in a collaborative registry and educational initiatives. CONCLUSIONS: The survey highlights heterogeneity in clinical practice. Large multisite and multidisciplinary collaborations are essential to gather data that inform outcomes for fetuses evaluated across institutions through registries as well as creation of guidelines and educational material

    Comprehensive quantitative analyses of fetal magnetic resonance imaging in isolated cerebral ventriculomegaly

    No full text
    Isolated cerebral ventriculomegaly (IVM) is the most common prenatally diagnosed brain anomaly occurs in 0.2-1 % of pregnancies. However, knowledge of fetal brain development in IVM is limited. There is no prenatal predictor for IVM to estimate individual risk of neurodevelopmental disability occurs in 10 % of children. To characterize brain development in fetuses with IVM and delineate their individual neuroanatomical variances, we performed comprehensive post-acquisition quantitative analysis of fetal magnetic resonance imaging (MRI). In volumetric analysis, brain MRI of fetuses with IVM (n = 20, 27.0 ± 4.6 weeks of gestation, mean ± SD) had revealed significantly increased volume in the whole brain, cortical plate, subcortical parenchyma, and cerebrum compared to the typically developing fetuses (controls, n = 28, 26.3 ± 5.0). In the cerebral sulcal developmental pattern analysis, fetuses with IVM had altered sulcal positional (both hemispheres) development and combined features of sulcal positional, depth, basin area, in both hemispheres compared to the controls. When comparing distribution of similarity index of individual fetuses, IVM group had shifted toward to lower values compared to the control. About 30 % of fetuses with IVM had no overlap with the distribution of control fetuses. This proof-of-concept study shows that quantitative analysis of fetal MRI can detect emerging subtle neuroanatomical abnormalities in fetuses with IVM and their individual variations

    Regional brain development in fetuses with Dandy-Walker malformation: A volumetric fetal brain magnetic resonance imaging study

    No full text
    Dandy-Walker malformation (DWM) is a common prenatally diagnosed cerebellar malformation, characterized by cystic dilatation of the fourth ventricle, upward rotation of the hypoplastic vermis, and posterior fossa enlargement with torcular elevation. DWM is associated with a broad spectrum of neurodevelopmental abnormalities such as cognitive, motor, and behavioral impairments, which cannot be explained solely by cerebellar malformations. Notably, the pathogenesis of these symptoms remains poorly understood. This study investigated whether fetal structural developmental abnormalities in DWM extended beyond the posterior fossa to the cerebrum even in fetuses without apparent cerebral anomalies. Post-acquisition volumetric fetal magnetic resonance imaging (MRI) analysis was performed in 12 fetuses with DWM and 14 control fetuses. Growth trajectories of the volumes of the cortical plate, subcortical parenchyma, cerebellar hemispheres, and vermis between 18 and 33 weeks of gestation were compared. The median (interquartile range) gestational ages at the time of MRI were 22.4 (19.4-24.0) and 23.9 (20.6-29.2) weeks in the DWM and control groups, respectively (p = 0.269). Eight of the 12 fetuses with DWM presented with associated cerebral anomalies, including hydrocephalus (n = 3), cerebral ventriculomegaly (n = 3), and complete (n = 2) and partial (n = 2) agenesis of the corpus callosum (ACC); 7 presented with extracerebral abnormalities. Chromosomal abnormalities were detected by microarray analysis in 4 of 11 fetuses with DWM, using amniocentesis. Volumetric analysis revealed that the cortical plate was significantly larger in fetuses with DWM than in controls (p = 0.040). Even without ACC, the subcortical parenchyma, whole cerebrum, cerebellar hemispheres, and whole brain were significantly larger in fetuses with DWM (n = 8) than in controls (p = 0.004, 0.025, 0.033, and 0.026, respectively). In conclusion, volumetric fetal MRI analysis demonstrated that the development of DWM extends throughout the brain during the fetal period, even without apparent cerebral anomalies

    Fetal cerebral ventriculomegaly: a narrative review and practical recommendations for pediatric neurologists

    No full text
    Fetal cerebral ventriculomegaly is one of the most common fetal neurological disorders identified prenatally by neuroimaging. The challenges in the evolving landscape of conditions like fetal cerebral ventriculomegaly involve accurate diagnosis and how best to provide prenatal counseling regarding prognosis as well as postnatal management and care of the infant. The purpose of this narrative review is to discuss the literature on fetal ventriculomegaly, including postnatal management and neurodevelopmental outcome, and to provide practice recommendations for pediatric neurologists.</p

    Disorganized Patterns of Sulcal Position in Fetal Brains with Agenesis of Corpus Callosum.

    No full text
    Fetuses with isolated agenesis of the corpus callosum (ACC) are associated with a broad spectrum of neurodevelopmental disability that cannot be specifically predicted in prenatal neuroimaging. We hypothesized that ACC may be associated with aberrant cortical folding. In this study, we determined altered patterning of early primary sulci development in fetuses with isolated ACC using novel quantitative sulcal pattern analysis which measures deviations of regional sulcal features (position, depth, and area) and their intersulcal relationships in 7 fetuses with isolated ACC (27.1 ± 3.8 weeks of gestation, mean ± SD) and 17 typically developing (TD) fetuses (25.7 ± 2.0 weeks) from normal templates. Fetuses with ACC showed significant alterations in absolute sulcal positions and relative intersulcal positional relationship compared to TD fetuses, which were not detected by traditional gyrification index. Our results reveal altered sulcal positional development even in isolated ACC that is present as early as the second trimester and continues throughout the fetal period. It might originate from altered white matter connections and portend functional variances in later life
    corecore