12 research outputs found

    Two-stage kondo effect in a quantum dot at a high magnetic field

    Get PDF
    We report a strong Kondo effect (Kondo temperature ~ 4K) at high magnetic field in a selective area growth semiconductor quantum dot. The Kondo effect is ascribed to a singlet-triplet transition in the ground state of the dot. At the transition, the low-temperature conductance approaches the unitary limit. Away from the transition, for low bias voltages and temperatures, the conductance is sharply reduced. The observed behavior is compared to predictions for a two-stage Kondo effect in quantum dots coupled to single-channel leads.Comment: 4 pages, 5 figure

    InSitu Reduction of Charge Noise in GaAs/AlxGa1-xAs Schottky-Gated Devices

    No full text
    We show that an insulated electrostatic gate can be used to strongly suppress ubiquitous background charge noise in Schottky-gated GaAs=AlGaAs devices. Via a 2D self-consistent simulation of the conduction band profile we show that this observation can be explained by reduced leakage of electrons from the Schottky gates into the semiconductor through the Schottky barrier, consistent with the effect of ‘‘bias cooling.’’ Upon noise reduction, the noise power spectrum generally changes from Lorentzian to 1/f type. By comparing wafers with different Al content, we exclude that DX centers play a dominant role in the charge noise.Kavli Institute of Nanoscience DelftApplied Science

    InSitu Reduction of Charge Noise in GaAs/AlxGa1-xAs Schottky-Gated Devices

    No full text
    We show that an insulated electrostatic gate can be used to strongly suppress ubiquitous background charge noise in Schottky-gated GaAs=AlGaAs devices. Via a 2D self-consistent simulation of the conduction band profile we show that this observation can be explained by reduced leakage of electrons from the Schottky gates into the semiconductor through the Schottky barrier, consistent with the effect of ‘‘bias cooling.’’ Upon noise reduction, the noise power spectrum generally changes from Lorentzian to 1/f type. By comparing wafers with different Al content, we exclude that DX centers play a dominant role in the charge noise.Kavli Institute of Nanoscience DelftApplied Science
    corecore