3 research outputs found

    A Model Archive for Simulations in a Partially-Mixed Idealized Estuary using the COAWST System: Model Code and Output

    Get PDF
    This dataset includes model input, code and output used in the publication Tarpley et al. (2019, Journal of Marine Science and Engineering), which used a coupled hydrodynamic-sediment transport model to investigate the roles of flocculation, bed consolidation and sediment-induced stratification on changes in fine-grained sediment distribution in an idealized estuarine model. The modeling system used in the development was the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework

    Formation of Oil-Particle-Aggregates: Numerical Model Formulation and Calibration

    Get PDF
    When oil spills occur in turbid waters, the oil droplets and mineral grains can combine to form oil-particle aggregates (OPAs). The formation of OPAs impacts the vertical transport of both the oil and the mineral grains; especially increasing deposition of oil to the seabed. Though the coastal oceans can be very turbid, to date, few numerical ocean models have accounted for aggregation processes that form OPAs. However, interactions between oil and mineral aggregates may be represented using techniques developed to account for sediment aggregation. As part of Consortium for Simulation of Oil Microbial Interactions in the Ocean (CSOMIO), we modified an existing, population dynamics-based sediment flocculation model to develop OPAMOD, a module that accounts for the formation of OPAs. A zero-dimensional model using OPAMOD is shown to be capable of reproducing the size distribution of aggregates from existing laboratory experimental results. Also using the zero-dimensional model, sensitivity tests were performed on two model parameters, the fractal dimension and collision efficiency. Results showed that fractal dimension played a role in the OPA size distribution by influencing the effective particle density, which modified the number concentration of flocs for a given mass concentration. However, the modeled particle characteristics and oil sequestration were relatively insensitive to collision efficiency. To explore OPA formation for an outer continental shelf site, two simulations were conducted using a one-dimensional (vertical) implementation of the model. One scenario had high sediment concentration near the seabed to mimic storm-induced resuspension. The other scenario represented river plume sediment delivery by having high sediment concentration in surface waters. Results showed that OPA formation was sensitive to the vertical distribution of suspended sediment, with the river plume scenario creating more OPA, and sequestering more oil within OPA than the storm resuspension scenario. OPAMOD was developed within the Coupled Ocean-Atmosphere-Wave-and-Sediment Transport (COAWST) modeling system, therefore the methods and parameterizations from this study are transferrable to a three-dimensional coupled oil-sediment-microbial model developed by CSOMIO within the COAWST framework

    Tidal variation in cohesive sediment distribution and sensitivity to flocculation and bed consolidation in an idealized, partially mixed estuary

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tarpley, D. R. N., Harris, C. K., Friedrichs, C. T., & Sherwood, C. R. Tidal variation in cohesive sediment distribution and sensitivity to flocculation and bed consolidation in an idealized, partially mixed estuary. Journal of Marine Science and Engineering, 7(10), (2019): 334, doi: 10.3390/jmse7100334.Particle settling velocity and erodibility are key factors that govern the transport of sediment through coastal environments including estuaries. These are difficult to parameterize in models that represent mud, whose properties can change in response to many factors, including tidally varying suspended sediment concentration (SSC) and shear stress. Using the COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) model framework, we implemented bed consolidation, sediment-induced stratification, and flocculation formulations within an idealized two-dimensional domain that represented the longitudinal dimension of a micro-tidal, muddy, partially mixed estuary. Within the Estuarine Turbidity Maximum (ETM), SSC and median floc diameter varied by a factor of four over the tidal cycle. Downstream of the ETM, the median floc size and SSC were several times smaller and showed less tidal variation (~20% or less). The suspended floc distributions only reached an equilibrium size as a function of SSC and shear in the ETM at peak tidal flow. In general, flocculation increased particle size, which reduced SSC by half in the ETM through increased settling velocity. Consolidation also limited SSC by reduced resuspension, which then limited floc growth through reduced SSC by half outside of the ETM. Sediment-induced stratification had negligible effects in the parameter space examined. Efforts to lessen the computation cost of the flocculation routine by reducing the number of size classes proved difficult; floc size distribution and SSC were sensitive to specification of size classes by factors of 60% and 300%, respectively.This research was funded by NSF, grant number OCE-1459708
    corecore