167 research outputs found

    Combined Omics Approaches Reveal the Roles of Non-canonical WNT7B Signaling and YY1 in the Proliferation of Human Pancreatic Progenitor Cells

    Get PDF
    ヒト膵臓細胞の増殖メカニズムを解明 --糖尿病治療に向けて前進--. 京都大学プレスリリース. 2020-10-30.The proliferation of human pancreatic progenitor cells (PPCs) is critical for developing cell therapies for diabetes. Here, using transcriptome analysis combined with small interfering RNA (siRNA) screening, we revealed that WNT7B is a downstream growth factor of AT7867, a compound known to promote the proliferation of PPCs generated from human pluripotent stem cells. Feeder cell lines stably expressing mouse Wnt7a or Wnt7b, but not other Wnts, enhanced PPC proliferation in the absence of AT7867. Importantly, Wnt7a/b ligands did not activate the canonical Wnt pathway, and PPC proliferation depended on the non-canonical Wnt/PKC pathway. A comparison of the phosphoproteome in response to AT7867 or a newly synthesized AT7867 derivative uncovered the function of YY1 as a transcriptional regulator of WNT7B. Overall, our data highlight unknown roles of non-canonical WNT7B/PKC signaling and YY1 in human PPC proliferation and will contribute to the stable supply of a cell source for pancreatic disease modeling and therapeutic applications

    Optical Absorption, Charge Separation and Recombination Dynamics in Pb and Sn/Pb Cocktail Perovskite Solar Cells and Their Relationships to the Photovoltaic Properties

    Get PDF
    Due to the unique characteristics such as simple low-temperature preparation method and high efficiency with a record of over 20%, organometal trihalide perovskite (CH3NH3PbI3)-based solid-state hybrid solar cells have attracted an increasing interest since 2012 when it was reported. During the last several years, some of the fundamental photophysical properties of perovskite related to the high photovoltaic performance have been investigated. Optical absorption, charge separation and recombination are very important factors influencing the perovskite solar cell performance. In this chapter, our recent results of optical absorption, charge separation (electron and hole injection) and charge recombination dynamics at each interface in perovskite solar cells, and their relationships to photovoltaic properties will be introduced. Our results suggest that charge recombination is a key factor in improving the performance of the perovskite solar cells

    Photovoltaic Properties of CdSe Quantum Dot Sensitized Inverse Opal TiO2 Solar Cells: The Effect of TiCl4 Post Treatment

    Get PDF
    Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. The morphology of TiO2 electrode is one of the most important factors in QDSSCs. Inverse opal (IO) TiO2 electrode, which has periodic mesoporous structure, is useful for QDSSCs because of better penetration of electrolyte than conventional nanoparticulate TiO2 electrode. In addition, the ordered three dimensional structure of IO-TiO2 would be better for electron transport. We have found that open circuit voltage Voc of QDSSCs with IO-TiO2 electrodes was much higher (0.2 V) than that with nanoparticulate TiO2 electrodes. But short circuit current density Jsc was lower in the case of IO-TiO2 electrodes because of the smaller surface area of IO-TiO2. In this study, for increasing surface area of IO-TiO2, we applied TiCl4 post treatment on IO-TiO2 and investigated the effect of the post treatment on photovoltaic properties of CdSe QD sensitized IO-TiO2 solar cells. It was found that Jsc could be enhanced due to TiCl4 post treatment, but decreased again for more than one cycle treatment, which indicates excess post treatment may lead to worse penetration of electrolyte. Our results indicate that the appropriate post treatment can improve the energy conversion efficiency of the QDSSCs

    Electronic structures of two types of TiO2 electrodes: inverse opal and nanoparticulate cases

    Get PDF
    We present a comparison between the electronic structures of inverse opal (IO) and nanoparticulate (NP)-TiO2 electrodes. The electronic structure details were obtained from optical absorption, fluorescence, and valence band studies in order to clarify the nature of the higher photovoltaic performance observed in sensitized solar cells using IO-TiO2 electrodes. We used photoacoustic (PA) and photoluminescence (PL) spectroscopy to characterize the optical absorption and fluorescence properties, respectively. Photoelectron yield (PY) spectroscopy was applied to characterize the position of the valence band maximum (VBM) of the IO- and NP-TiO2 electrodes. The PA spectrum for IO-TiO2 is different to that for NP-TiO2, indicating differences in the exciton–phonon interactions and the density of states in the conduction band. PL measurements showed that the curvature of the valence band structure of IO-TiO2 is different to that of NP-TiO2. Also, PL measurements showed that the oxygen vacancy in IO-TiO2 is different to that in NP-TiO2. Moreover, PY measurements showed VBM in IO-TiO2 to be at a higher position than that in NP-TiO2, suggesting a correlation with the increased open circuit voltage (Voc) in sensitized solar cells
    corecore