560 research outputs found

    Time-delay control of a magnetic levitated linear positioning system

    Get PDF
    In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results

    Decoherence Control in Open Quantum System via Classical Feedback

    Get PDF
    In this work we propose a novel strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done so. A novel construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with non-trivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and Decoherence Free Subspaces(DFS). Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system has to be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. The results are qualitatively different and superior to the ones obtained via master equations. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free Quantum Computing.Comment: 17 pages, 4 Fig

    Antibodies to the Mr 64,000 (64K) protein in islet cell antibody positive non-diabetic individuals indicate high risk for impaired Beta-cell function

    Get PDF
    A prospective study of a normal childhood population identified 44 islet cell antibody positive individuals. These subjects were typed for HLA DR and DQ alleles and investigated for the presence of antibodies to the Mr 64,000 (64K) islet cell antigen, complement-fixing islet cell antibodies and radiobinding insulin autoantibodies to determine their potency in detecting subjects with impaired Beta-cell function. At initial testing 64K antibodies were found in six of 44 islet cell antibody positive subjects (13.6%). The same sera were also positive for complement-fixing islet cell antibodies and five of them had insulin autoantibodies. During the follow-up at 18 months, islet cell antibodies remained detectable in 50% of the subjects studied. In all six cases who were originally positive, 64K antibodies were persistently detectable, whereas complement-fixing islet cell antibodies became negative in two of six and insulin autoantibodies in one of five individuals. HLA DR4 (p < 0.005) and absence of asparic acid (Asp) at position 57 of the HLA DQ chain (p < 0.05) were significantly increased in subjects with 64K antibodies compared with control subjects. Of 40 individuals tested in the intravenous glucose tolerance test, three had a first phase insulin response below the first percentile of normal control subjects. Two children developed Type 1 (insulin-dependent) diabetes mellitus after 18 and 26 months, respectively. Each of these subjects was non-Asp homozygous and had persistent islet cell and 64K antibodies. We conclude that 64K antibodies, complement-fixing islet cell antibodies and insulin autoantibodies represent sensitive serological markers in assessing high risk for a progression to Type 1 diabetes in islet cell antibody positive non-diabetic individuals

    Degrees of controllability for quantum systems and applications to atomic systems

    Get PDF
    Precise definitions for different degrees of controllability for quantum systems are given, and necessary and sufficient conditions are discussed. The results are applied to determine the degree of controllability for various atomic systems with degenerate energy levels and transition frequencies.Comment: 20 pages, IoP LaTeX, revised and expanded versio

    “Learning on a chip:” Microfluidics for formal and informal science education

    Get PDF
    © 2019 Author(s). Microfluidics is a technique for the handling of small volumes of liquids on the order of picoliters to nanoliters and has impact for miniaturized biomedical science and fundamental research. Because of its multi- and interdisciplinary nature (i.e., combining the fields of biology, chemistry, physics, and engineering), microfluidics offers much potential for educational applications, both at the university level as well as primary and secondary education. Microfluidics is also an ideal "tool" to enthuse and educate members of the general public about the interdisciplinary aspects of modern sciences, including concepts of science, technology, engineering, and mathematics subjects such as (bio)engineering, chemistry, and biomedical sciences. Here, we provide an overview of approaches that have been taken to make microfluidics accessible for formal and informal learning. We also point out future avenues and desired developments. At the extreme ends, we can distinguish between projects that teach how to build microfluidic devices vs projects that make various microscopic phenomena (e.g., low Reynolds number hydrodynamics, microbiology) accessible to learners and the general public. Microfluidics also enables educators to make experiments low-cost and scalable, and thereby widely accessible. Our goal for this review is to assist academic researchers working in the field of microfluidics and lab-on-a-chip technologies as well as educators with translating research from the laboratory into the lecture hall, teaching laboratory, or public sphere

    No association between islet cell antibodies and coxsackie B, mumps, rubella and cytomegalovirus antibodies in non-diabetic individuals aged 7–19 years

    Get PDF
    Viral antibodies were tested in a cohort of 44 isletcell antibody-positive individuals age 7–19 years, and 44 of their islet cell antibody-negative age and sex-matched classmates selected from a population study of 4208 pupils who had been screened for islet cell antibodies. Anti-coxsackie B1-5 IgM responses were detected in 14 of 44 (32%) of the islet cell antibody-positive subjects and in 7 of 44 (16%) control subjects. This difference did not reach the level of statistical significance. None of the islet cell antibody-positive subjects had specific IgM antibodies to mumps, rubella, or cytomegalovirus. There was also no increase in the prevalence or the mean titres of anti-mumps-IgG or IgA and anti-cytomegalovirus-IgG in islet cell antibody-positive subjects compared to control subjects. These results do not suggest any association between islet cell antibodies, and possibly insulitis, with recent mumps, rubella or cytomegalo virus infection. Further studies are required to clarify the relationship between islet cell antibodies and coxsackie B virus infections

    Analytic Controllability of Time-Dependent Quantum Control Systems

    Full text link
    The question of controllability is investigated for a quantum control system in which the Hamiltonian operator components carry explicit time dependence which is not under the control of an external agent. We consider the general situation in which the state moves in an infinite-dimensional Hilbert space, a drift term is present, and the operators driving the state evolution may be unbounded. However, considerations are restricted by the assumption that there exists an analytic domain, dense in the state space, on which solutions of the controlled Schrodinger equation may be expressed globally in exponential form. The issue of controllability then naturally focuses on the ability to steer the quantum state on a finite-dimensional submanifold of the unit sphere in Hilbert space -- and thus on analytic controllability. A relatively straightforward strategy allows the extension of Lie-algebraic conditions for strong analytic controllability derived earlier for the simpler, time-independent system in which the drift Hamiltonian and the interaction Hamiltonia have no intrinsic time dependence. Enlarging the state space by one dimension corresponding to the time variable, we construct an augmented control system that can be treated as time-independent. Methods developed by Kunita can then be implemented to establish controllability conditions for the one-dimension-reduced system defined by the original time-dependent Schrodinger control problem. The applicability of the resulting theorem is illustrated with selected examples.Comment: 13 page

    E-ful llment: the strategy and operational requirements

    Get PDF
    Abstract An e-ful llment system is designed to meet the high order volume and stringent customer service requirements of global business-to-consumer e-commerce. The system converts the traditional warehouse into a multi-channel e-ful llment center. In the e-commerce environment, some of the toughest decisions must be made on little or no hard information. In this study, the nature of e-business and the typical ful llment process are discussed. The authors further examine the strategy and operational requirements for e-ful llment. This article is concluded with the implication of a successful e-ful llment system, a suggested design of an e-ful llment center, and the future research focuses

    Optimal Control for Generating Quantum Gates in Open Dissipative Systems

    Full text link
    Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control using relaxation parameters against time-optimal control is explored and exemplified in numerical and in algebraic terms: it is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalising decoherence-free subspaces to more realistic scenarios, openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benefit it requires control fields orders of magnitude lower than the bang-bang decouplings in the latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure
    corecore