31 research outputs found

    Do Directors Have a Use-By Date? Examining the Impact of Board Tenure on Firm Performance

    Get PDF
    Corporate boards serve the dual important functions of monitoring and advising management. We examine whether corporate boards consisting of longer-serving independent directors are better able to fulfill these functions due to firm-specific knowledge accumulation, or whether director performance suffers due to declining effectiveness in monitoring managers and/or overall staleness of board capital (board value to shareholders). Using a broad sample of up to 3,800 firms over a 20-year period, our evidence suggests that board tenure is positively related to forward-looking measures of market value and stock returns, with the relationship reversing after about nine years on average. The detrimental effect of longer average board tenure on market value (after an initial period of positive effects) is stronger for high growth firms, which is consistent with the deterioration of the board members’ ability to perform their advisory function

    Unstable decay and state selection II

    Full text link
    The decay of unstable states when several metastable states are available for occupation is investigated using path-integral techniques. Specifically, a method is described which allows the probabilities with which the metastable states are occupied to be calculated by finding optimal paths, and fluctuations about them, in the weak noise limit. The method is illustrated on a system described by two coupled Langevin equations, which are found in the study of instabilities in fluid dynamics and superconductivity. The problem involves a subtle interplay between non-linearities and noise, and a naive approximation scheme which does not take this into account is shown to be unsatisfactory. The use of optimal paths is briefly reviewed and then applied to finding the conditional probability of ending up in one of the metastable states, having begun in the unstable state. There are several aspects of the calculation which distinguish it from most others involving optimal paths: (i) the paths do not begin and end on an attractor, and moreover, the final point is to a large extent arbitrary, (ii) the interplay between the fluctuations and the leading order contribution are at the heart of the method, and (iii) the final result involves quantities which are not exponentially small in the noise strength. This final result, which gives the probability of a particular state being selected in terms of the parameters of the dynamics, is remarkably simple and agrees well with the results of numerical simulations. The method should be applicable to similar problems in a number of other areas such as state selection in lasers, activationless chemical reactions and population dynamics in fluctuating environments.Comment: 28 pages, 6 figures. Accepted for publication in Phys. Rev.

    Instabilities and resistance fluctuations in thin accelerated superconducting rings

    Full text link
    The non-equilibrium properties of a driven quasi-one dimensional superconducting ring subjected to a constant electromotive force ({\it emf}) is studied. The {\it emf} accelerates the superconducting electrons until the critical current is reached and a dissipative phase slip occurs that lowers the current. The phase slip phenomena is examined as a function of the strength of the {\it emf}, thermal noise, and normal state resistivity. Numerical and analytic methods are used to make detailed predictions for the magnitude of phase slips and subsequent dissipation.Comment: Some movies are available here at http://www.lce.hut.fi/~karttune/S

    Dynamic transitions between metastable states in a superconducting ring

    Full text link
    Applying the time-dependent Ginzburg-Landau equations, transitions between metastable states of a superconducting ring are investigated in the presence of an external magnetic field. It is shown that if the ring exhibits several metastable states at a particular magnetic field, the transition from one metastable state to another one is governed by both the relaxation time of the absolute value of the order parameter tau_{|psi|} and the relaxation time of the phase of the order parameter tau_{phi}. We found that the larger the ratio tau_{|psi|}tau_{phi} the closer the final state will be to the absolute minimum of the free energy, i.e. the thermodynamic equilibrium. The transition to the final state occurs through a subsequent set of single phase slips at a particular point along the ring.Comment: 7 pages, 6 figures, Revtex 4.0 styl

    Functional determinants for general Sturm-Liouville problems

    Full text link
    Simple and analytically tractable expressions for functional determinants are known to exist for many cases of interest. We extend the range of situations for which these hold to cover systems of self-adjoint operators of the Sturm-Liouville type with arbitrary linear boundary conditions. The results hold whether or not the operators have negative eigenvalues. The physically important case of functional determinants of operators with a zero mode, but where that mode has been extracted, is studied in detail for the same range of situations as when no zero mode exists. The method of proof uses the properties of generalised zeta-functions. The general form of the final results are the same for the entire range of problems considered.Comment: 28 pages, LaTe

    Functional determinants by contour integration methods

    Full text link
    We present a simple and accessible method which uses contour integration methods to derive formulae for functional determinants. To make the presentation as clear as possible, the general idea is first illustrated on the simplest case: a second order differential operator with Dirichlet boundary conditions. The method is applicable to more general situations, and we discuss the way in which the formalism has to be developed to cover these cases. In particular, we also show that simple and elegant formulae exist for the physically important case of determinants where zero modes exist, but have been excluded.Comment: 29 page

    Multiply-connected Bose-Einstein condensed alkali gases: Current-carrying states and their decay

    Full text link
    The ability to support metastable current-carrying states in multiply-connected settings is one of the prime signatures of superfluidity. Such states are investigated theoretically for the case of trapped Bose condensed alkali gases, particularly with regard to the rate at which they decay via thermal fluctuations. The lifetimes of metastable currents can be either longer or shorter than experimental time-scales. A scheme for the experimental detection of metastable states is sketched.Comment: 4 pages, including 1 figure (REVTEX

    Flux transitions in a superconducting ring

    Full text link
    We perform a numeric study of the flux transitions in a superconducting ring at fixed temperature, while the applied field is swept at an ideally slow rate. The current around the ring and its free energy are evaluated. We partially explain some of the known experimental features, and predict a considerably large new feature: in the vicinity of a critical field, giant jumps are expected
    corecore