29 research outputs found

    The Wolin National Park

    No full text

    Research reactor MARIA operation in 2015

    No full text
    Wysokostrumieniowy reaktor badawczy MARIA, eksploatowany w Narodowym Centrum Badań Jądrowych w Świerku, wykorzystywany jest do produkcji radioizotopów oraz do prowadzenia badań z wykorzystaniem wiązek neutronów wyprowadzanych z kanałow poziomych. W artykule opisano parametry techniczne reaktora i charakterystykę jego pracy w 2015 r.The MARIA high-flux research reactor operated at the National Centre for Nuclear Research is used for targets irradiation and to run physical experiments using neutrons coming out from horizontal channels. The technical parameters of the reactor and characteristics of its operation in 2015 are described

    Correction of the electric resistivity distribution of Si wafers using selective neutron transmutation doping (SNTD) in MARIA nuclear research reactor

    No full text
    The result of the electric resistivity distribution modification in silicon wafers, by means of selective neutron transmutation doping (SNTD) method in the MARIA nuclear research reactor at Świerk/Otwock (Poland) is presented. Silicon wafer doping system has been fully designed for the MARIA reactor, where irradiation took place. The silicon wafer resistivity distribution after SNTD has been measured by the capacity voltage (C-V) method. In this article we show first results of this correction technique. The result of the present investigation is that the planar resolution of the correction process is about 4 mm. It is the full width at half maximum (FWHM) of the resistivity distribution produced by thermal neutrons irradiation of Si wafer through a 3 mm hole in the Cd-mask

    Modelling of thermal hydraulics in a KAROLINA calorimeter for its calibration methodology validation

    No full text
    Results of numerical calculations of heat exchange in a nuclear heating detector for nuclear reactors are presented in this paper. The gamma radiation is generated in nuclear reactor during fission and radiative capture reactions as well as radioactive decay of its products. A single-cell calorimeter has been designed for application in the MARIA research reactor in the National Centre for Nuclear Research (NCBJ) in Świerk near Warsaw, Poland, and can also be used in the Jules Horowitz Reactor (JHR), which is under construction in the research centre in Cadarache, France. It consists of a cylindrical sample, which is surrounded by a gas layer, contained in a cylindrical housing. Additional calculations had to be performed before its insertion into the reactor. Within this analysis, modern computational fuid dynamics (CFD) methods have been used for assessing important parameters, for example, mean surface temperature, mean volume temperature, and maximum sample (calorimeter core) temperature. Results of an experiment performed at a dedicated out-of-pile calibration bench and results of numerical modelling validation are also included in this paper

    Modelling of thermal hydraulics in a KAROLINA calorimeter for its calibration methodology validation

    No full text
    Results of numerical calculations of heat exchange in a nuclear heating detector for nuclear reactors are presented in this paper. The gamma radiation is generated in nuclear reactor during fission and radiative capture reactions as well as radioactive decay of its products. A single-cell calorimeter has been designed for application in the MARIA research reactor in the National Centre for Nuclear Research (NCBJ) in Świerk near Warsaw, Poland, and can also be used in the Jules Horowitz Reactor (JHR), which is under construction in the research centre in Cadarache, France. It consists of a cylindrical sample, which is surrounded by a gas layer, contained in a cylindrical housing. Additional calculations had to be performed before its insertion into the reactor. Within this analysis, modern computational fuid dynamics (CFD) methods have been used for assessing important parameters, for example, mean surface temperature, mean volume temperature, and maximum sample (calorimeter core) temperature. Results of an experiment performed at a dedicated out-of-pile calibration bench and results of numerical modelling validation are also included in this paper

    Calibration of a Single-Cell Calorimeter in a New Transient-state Test Bench

    No full text
    The nuclear radiation energy deposition rate is a key value for the thermal design of experiments, on materials and nuclear fuels, carried out in experimental channels of nuclear research reactors. Studies are led for two kinds of sensor currently dedicated to quantifying this value and corresponding to calorimeter. Development of new sensors but also improvement of their calibration and their associated interpretation methods are necessary. These aims are possible by many ways such as numerical simulations of sensor, characterizations under laboratory conditions and experimental campaign under irradiation conditions. The calibration step under non-irradiation conditions represents a crucial phase. This phase requires the development of specific benches. The present paper focuses on a new thermal-transient bench and its use to perform calibration of a polish single-cell calorimeter. The new bench is detailed. First studies of the influence of external conditions (temperature, velocity) on the calorimeter sensitivity are presented and discussed

    Calibration of a Single-Cell Calorimeter in a New Transient-state Test Bench

    Get PDF
    The nuclear radiation energy deposition rate is a key value for the thermal design of experiments, on materials and nuclear fuels, carried out in experimental channels of nuclear research reactors. Studies are led for two kinds of sensor currently dedicated to quantifying this value and corresponding to calorimeter. Development of new sensors but also improvement of their calibration and their associated interpretation methods are necessary. These aims are possible by many ways such as numerical simulations of sensor, characterizations under laboratory conditions and experimental campaign under irradiation conditions. The calibration step under non-irradiation conditions represents a crucial phase. This phase requires the development of specific benches. The present paper focuses on a new thermal-transient bench and its use to perform calibration of a polish single-cell calorimeter. The new bench is detailed. First studies of the influence of external conditions (temperature, velocity) on the calorimeter sensitivity are presented and discussed

    Calculation to Experiment Comparison of SPND Signals in Various Nuclear Reactor Environments

    No full text
    International audienceIn the perspective of irradiation experiments in the future Jules Horowitz Reactor (JHR), the Instrumentation Sensors and Dosimetry Laboratory of CEA Cadarache (France) is developing a numerical tool for SPND design, simulation and operation. In the frame of the SPND numerical tool qualification, dedicated experiments have been performed both in the Slovenian TRIGA Mark II reactor (JSI) and very recently in the French CEA Saclay OSIRIS reactor, as well as a test of two detectors in the core of the Polish MARIA reactor (NCBJ). A full description of experimental set-ups and neutron-gamma calculations schemes are provided in the first part of the paper. Calculation to experiment comparison of the various SPNDs in the different reactors is thoroughly described and discussed in the second part. Presented comparisons show promising final results

    Delayed Gamma Measurements in Different Nuclear Research Reactors Bringing Out the Importance of Their Contribution in Gamma Flux Calculations

    No full text
    International audienceNeutron and gamma flux levels are key parameters in nuclear research reactors. In Material Testing Reactors, such as the future Jules Horowitz Reactor, under construction at the French Alternative Energies and Atomic Energy Commission (CEA Cadarache, France), the expected gamma flux levels are very high (nuclear heating is of the order of 20 W/g at 100 MWth). As gamma rays deposit their energy in the reactor structures and structural materials it is important to take them into account when designing irradiation devices. There are only a few sensors which allow measurements of the nuclear heating [12]; a recent development at the CEA Cadarache allows measurements of the gamma flux using a miniature ionization chamber (MIC) [3]. The measured MIC response is often compared with calculation using modern Monte Carlo (MC) neutron and photon transport codes, such as TRIPOLI-4 and MCNP6. In these calculations only the production of prompt gamma rays in the reactor is usually modelled thus neglecting the delayed gamma rays. Hence calculations and measurements are usually in better accordance for the neutron flux than for the gamma flux. In this paper we study the contribution of delayed gamma rays to the total MIC signal in order to estimate the systematic error in gamma flux MC calculations. In order to experimentally determine the delayed gamma flux contributions to the MIC response, we performed gamma flux measurements with CEA developed MIC at three different research reactors: the OSIRIS reactor (MTR - 70 MWth at CEA Saclay, France), the TRIGA MARK II reactor (TRIGA - 250 kWth at the Jožef Stefan Institute, Slovenia) and the MARIA reactor (MTR - 30 MWth at the National Center for Nuclear Research, Poland). In order to experimentally assess the delayed gamma flux contribution to the total gamma flux, several reactor shut down (scram) experiments were performed specifically for the purpose of the measurements. Results show that on average about 30 % of the MIC signal is due to the delayed gamma rays
    corecore