26 research outputs found
Cellular Models for River Networks
A cellular model introduced for the evolution of the fluvial landscape is
revisited using extensive numerical and scaling analyses. The basic network
shapes and their recurrence especially in the aggregation structure are then
addressed. The roles of boundary and initial conditions are carefully analyzed
as well as the key effect of quenched disorder embedded in random pinning of
the landscape surface. It is found that the above features strongly affect the
scaling behavior of key morphological quantities. In particular, we conclude
that randomly pinned regions (whose structural disorder bears much physical
meaning mimicking uneven landscape-forming rainfall events, geological
diversity or heterogeneity in surficial properties like vegetation, soil cover
or type) play a key role for the robust emergence of aggregation patterns
bearing much resemblance to real river networks.Comment: 7 pages, revtex style, 14 figure
Topological self-similarity on the random binary-tree model
Asymptotic analysis on some statistical properties of the random binary-tree
model is developed. We quantify a hierarchical structure of branching patterns
based on the Horton-Strahler analysis. We introduce a transformation of a
binary tree, and derive a recursive equation about branch orders. As an
application of the analysis, topological self-similarity and its generalization
is proved in an asymptotic sense. Also, some important examples are presented