9 research outputs found

    Highest coefficient of scalar products in SU(3)-invariant integrable models

    Full text link
    We study SU(3)-invariant integrable models solvable by nested algebraic Bethe ansatz. Scalar products of Bethe vectors in such models can be expressed in terms of a bilinear combination of their highest coefficients. We obtain various different representations for the highest coefficient in terms of sums over partitions. We also obtain multiple integral representations for the highest coefficient.Comment: 17 page

    On the Bethe Ansatz for the Jaynes-Cummings-Gaudin model

    Get PDF
    We investigate the quantum Jaynes-Cummings model - a particular case of the Gaudin model with one of the spins being infinite. Starting from the Bethe equations we derive Baxter's equation and from it a closed set of equations for the eigenvalues of the commuting Hamiltonians. A scalar product in the separated variables representation is found for which the commuting Hamiltonians are Hermitian. In the semi classical limit the Bethe roots accumulate on very specific curves in the complex plane. We give the equation of these curves. They build up a system of cuts modeling the spectral curve as a two sheeted cover of the complex plane. Finally, we extend some of these results to the XXX Heisenberg spin chain.Comment: 16 page

    A2(2)A_{2}^{(2)} Gaudin model and its associated Knizhnik-Zamolodchikov equation

    Full text link
    The semiclassical limit of the algebraic Bethe Ansatz for the Izergin-Korepin 19-vertex model is used to solve the theory of Gaudin models associated with the twisted A2(2)A_{2}^{(2)} R-matrix. We find the spectra and eigenvectors of the N1N-1 independents Gaudin Hamiltonians. We also use the off-shell Bethe Ansatz method to show how the off-shell Gaudin equation solves the associated trigonometric system of Knizhnik-Zamolodchikov equations.Comment: 20 pages,no figure, typos corrected, LaTe

    Manin matrices and Talalaev's formula

    Full text link
    We study special class of matrices with noncommutative entries and demonstrate their various applications in integrable systems theory. They appeared in Yu. Manin's works in 87-92 as linear homomorphisms between polynomial rings; more explicitly they read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: [Mij,Mkl]=[Mkj,Mil][M_{ij}, M_{kl}]=[M_{kj}, M_{il}] (e.g. [M11,M22]=[M21,M12][M_{11}, M_{22}]=[M_{21}, M_{12}]). We claim that such matrices behave almost as well as matrices with commutative elements. Namely theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) holds true for them. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation "RTT=TTR" and the so--called Cartier-Foata matrices. Also, they enter Talalaev's hep-th/0404153 remarkable formulas: det(zLGaudin(z))det(\partial_z-L_{Gaudin}(z)), det(1-e^{-\p}T_{Yangian}(z)) for the "quantum spectral curve", etc. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g in the construction of new generators in Z(U(gln^))Z(U(\hat{gl_n})) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We also discuss applications to the separation of variables problem, new Capelli identities and the Langlands correspondence.Comment: 40 pages, V2: exposition reorganized, some proofs added, misprints e.g. in Newton id-s fixed, normal ordering convention turned to standard one, refs. adde

    Nested Bethe ansatz for "all" closed spin chains

    Full text link
    We present in an unified and detailed way the Nested Bethe Ansatz for closed spin chains based on Y(gl(n)), Y(gl(m|n)), U_q(gl(n)) or U_q(gl(m|n)) (super)algebras, with arbitrary representations (i.e. `spins') on each site of the chain. In particular, the case of indecomposable representations of superalgebras is studied. The construction extends and unifies the results already obtained for spin chains based on Y(gl(n)) or U_q(gl(n)) and for some particular super-spin chains. We give the Bethe equations and the form of the Bethe vectors. The case of gl(2|1), gl(2|2$ and gl(4|4) superalgebras (that are related to AdS/CFT correspondence) is also detailed.Comment: 30 pages; New section on indecomposable representations added and the case of gl(2|1), gl(2|2) and gl(4|4) superalgebras (that are related to AdS/CFT correspondence) is also detaile

    Essays on the theory of elliptic hypergeometric functions

    No full text
    corecore